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PKEFACE.

It will be generally acknowledged, I think, that there is no

subject of Natural Philosophy, equal in importance to that

familiarly known as Rigid Dynamics, of w^hich the study is

so exclusively restricted to the more advanced students of

Mathematics. Yet this restriction cannot be said to be

necessary, for the treatment of the subject involves none

of the higher mathematical methods ; and it must be allowed

to be unfortunate, for the science of motion is the basis of

Mechanical Engineering, and furnishes the explanation of

many interesting terrestrial and cosmical phenomena.

This restriction of the study is chiefly due to the fact

that, while the conceptions and reasoning peculiar to the

subject are somewhat difficult, the explanations of its lead-

ing principles, given in the books commonly used by stu-

dents, are for the most part very brief, and often, through

brevity, obscure.

It is this deficiency of explanation which I have at-

tempted to supply in the following little book. It is not

my purpose to acquaint the student with the splendid gene-

ralizations of Lagrange and of more recent philosophers.

For that the books in present use leave nothing to be

desired. My aim is to render more general the study of

this interesting science, by presenting as simple a view of

its principles as is consistent with scientific accuracy, and

to give a sound foundation to the student who is to proceed

higher.
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It is my hope that tlie book may be useful not only to

students of Natural Philosophy, but also to engineers.

Most of them possess a knowledge of the principles of Me-

chanics, of the method of Co-ordinate Geometry, and of

the Integral Calculus ; and that is all that is here required.

The principle on which this science is based has been

so Ions: connected with the name of D'Alembert that it

would hardly be recognised under any other. Nevertheless

there is no doubt that Euler has more claim to its author-

ship, inasmuch as he first used it. D'Alembert admits this,

but says that Euler gave no proof. I believe D'Alembert's

real merit to be, that his explanation was exactly suited

to clear away the difficulties which Avere perplexing men's

minds.

The works to which I am principally indebted are :

—

Thomson and Tait's Natural Philosophy; Routh's Rigid

Dynamics ; Resal's Cinematique Pure; Rankine's Machinery

and Millworh ; Walton's Mechanical Prohlems; Whewell's

History of the Inductive Sciences; Willis' Principles of Me-

chanism; Muller's Lehrhuch der kosmischen Physik ; Mon-

tucla's Histoire des Mathematiques; D'Alembert's Traite de

Dynamique, and Euler's Mechanik.

My thanks arc due to Dr Campion, of Queens' College,

for many valuable suggestions which he has made; and to

several of my pupils for their frank statement of their

difficulties.

G. PIRIE.

Queens' College, Cambridge.

December, 1874.
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GEOMETRY OF MOTION.

I.

1. A RIGID body is an assemblage of particles such

that the distance between each pair is unchangeable.

The movements of such a body are very different from

those of a set of independent points. Its fixed connec-

tions introduce a common movement. Any straight line or

any plane of particles in the body must remain pJways a

straight line or plane. If all such planes remain parallel to

themselves, the motion is one of translation. But if any
such plane makes an angle with its former position the

motion is rotational. And the velocity of rotation—angular

velocity—is measured by the rate at which the plane is de-

scribing angles.

Thus the connecting rod of the driving wheels of a goods'

locomotive has only a translational motion;—so also (ap-

proximately) the axis of the earth in its yearly motion round

the sun. In a well-thrown quoit the motions are combined.

2. From this definition of rotation it follows that a

point cannot rotate. It may revolve about another point,

but it contains no lines nor planes which can describe angles.

For rotation there must be an extended system. A point in

motion may be said to be revolving about any point whatever

situated in the line through it at right angles to its direc-

tion of motion, for it is moving at the moment in a circle

with the point as centre. But the body of which this is a

point may not be rotating. For rotation it is necessary that

the different points of the body should be at the moment
revolving about the same axis.

P. G. ..
" 1



2 EOTATIOX AND REVOLUTIOX.

Suppose a man to move round a column viewing its parts

in succession. In this case he is also rotating. Were he
to move without rotation, he must work round the column
sometimes forAvards, sometimes sidewards, sometimes back-
wards, but always facing the same point of the compass.

3. From the definition it follows also that rotation is di-

rectional, i.e. it takes place not so much about an axis or point

as about a direction or in a plane. The bod}^ AB lias rotated

in passing to the position AB'; but the amoimt of the rota-

tion is measured by the angle between the straight lines AB
and A'B'. It matters not to the angular velocity of a car-

riage-wheel whether it is rolling along a level road or up a
hill, or whether the wdiecl, being raised from the ground, is

whirled round its own axle. Or on a larger scale, whether a

ship rounds a promontory or swings with her anchor fixed

through the same angle is indifferent to the amount and
direction of the rotation performed. There is indeed in

general an axis round whicli the body may, in a stricter sense,

be said to rotate, for every point of the body moves in a
circle about it. This rotation is the more easily imagined,

but it ought not to be allowed to expel the idea of the other.

It is a pity there are not separate words to distinguish them.
We will in future speak of them as rotation round a point or

axis, and rotation round a direction or in a plane.



SIMULTANEOUS MOTIONS. o

4. The method which mathematicians adopt in treating

of simultaneous motions is to consider them one after the

other. A velocity is the describing of a certain length or

angle in a certain time. Properties of small linear and
angular displacements are properties of linear and angular

velocities. If, therefore, a body is subject to two inde-

pendent motions, as rotations about two axes or a rotation

and a translation, it is considered to obey them in turn each

for a very short time. A rifle bullet moving towards the

target and rotating all the time is supposed to approach the

target without turning, through an infinitely small space, and
then to turn round through an infinitely small angle, much
like a man descending a spiral staircase. This is not the

actual motion, any more than a polygon is a curve, but it

differs as little as Ave please from the real motion, and it

clears our ideas and enables us to apply mathematical

methods to the problems.

If a body is solicited to two different motions by two
simultaneous causes, it will in reality follow neither ; but it

may be supposed to have followed both.

Thus the very extravagant idea of some of the earliest

writers on projectiles that a cannon-ball went straight until

it had exhausted the force of projection and then fell down
straight under gravity, had in it, notwithstanding its

grievous confusion of force with velocity, a germ of truth,

(viz.) that the causes of motion must be considered

separately.

A skater describing circles, the nut of a screw, a crank

rod one end of which moves in a straight line while the

other describes a circle, the arms of a common form of

reaping m.achine which rotate about an inclined axis while

carried forwards by the machine, and hundreds of other

familiar cases, supply examples of translation combined v/ith

rotation.

Examples of combined rotations are seen in the screw or

paddles of a steamer, which are rotating about a horizontal

axis while the steamer may bo moving round a curve

1—2



4 PARALLEL AXES.

and thus rotating about the vertical; or in the common
gyroscopic toy, where a metal ring rotates about a diameter

of a circle, and is borne along also by the rotation of this

circle about the vertical ; or in the sails of a windmill, which
may have rotations about their own axis, about the vertical

(if the wind veers) and with the whole body of the windmill

round the polar axis of the earth.

5. Motions in one plane and in ixiralUl planes.

Let A be a point of a rigid body which is moved to A'.

Bisect AA' perpendi ularly by the straight line -^^A^ On

NX take any point B. We may suppose that the point A
has been moved to A! by the body having been caused to ro-

tate about an axis through B at right angles to the plane of

the paper. In this case the line of particles AB has taken

up the position A'B. Now cause the body to rotate about an
axis through A' perpendicular to the plane of the paper

through an equal and opposite angle. The line A'B takes

up the position AB' parallel to AB, whence we infer that a

displacement of translation is equivalent to two equal and
opposite displacements of rotation about two parallel axes.

If these displacements are small, yl^' is at right angles to

AB, and the proposition becomes that two equal and opposite

angular velocities about two parallel axes are equivalent to a

translational velocity in a direction at right angles to the

plane of the axes.
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It will be convenient to denote sucli axes perpendicular

to the plane of the paper by the point where they cut this

plane. Thus we might have spoken of A' and B as axes.

This important proposition may be reduced to the paral-

lelosfram of linear velocities.

Let P be any point of a body which has simultaneous equal

and opposite rotations round A and B. The velocities of P

due to these are represented by Pa and Ph perpendicular and

proportional to PA and PB respectively. The resultant

velocity is represented by the diagonal PB of the parallelo-

gram on Pa, Ph. But this parallelogram is similar to that

whose sides are PA, PB. Hence the velocity of Pis propor-

tional and perpendicular to AB. As this holds for every

point of the body, the wliole is being translated at right

angles to AB, and v/ith velocity proportional to it.

6. From the definition of rotation it is clear that two

equal and opposite rotations cannot produce a rotation ; for

they turn a straight line in the body through equal but

opposite angles.

For the same reason the angular velocity of a body

rotating about two parallel axes is the sum or difference of

their separate angular velocities.

Let P be any point of a body which has angular velocities

in the same direction round A and B. And take on PB a

point G such that PB and PC are proportional to the angu-

lar velocities round ^ and P respectively. Then the linear
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velocities of P will be at right angles to PA and PB, and

proportional to PA . PB and PB . PC respectively, i. e. to PA

and PC. Hence, joining AC and bisecting it in N, the result-

ant velocity of P is at right angles to PN and is measured

by twice Pk. P may therefore be taken to be revolving about

any point in PN. Let PN produced cut AB in R ; we can

shew that R is the same point wherever P is, and therefore

the whole body is rotating about R. The angular velocity

has been settled independently.

Produce CP to C, making PC equal to PC. Join AC
PNR is parallel to A C, and therefore

AR :RB:: C'PiPB;

or R divides AB inversely as the angular velocities round A
andB.

7. Any displacement whatever may be given to a body

by a translation and a rotation about an axis.

jB

For to bring AB to A'B' it is only necessary to translate

the body till a point A reaches its new position A\ and then

to rotate the body about A\
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Thus ill general any motion of a body may be composed

of a rotation round an arbitrary point and a translation.

And this point may generally be so chosen that the move-

ment of translation shall not be required. In other words,

there is one point which is unaffected by the change of posi-

tion. To find this point. Bisect A A' and BB' perpendicu-

larly, and let the bisectors meet in K
Join NA, NA\ NB, NB\

Then ^''A is equal to JS^'A' and NB to NB'.

If, then, we can shew that the angle ANA' is equal to

the angle BNB', we shall have proved that when the body is

rotated about N, so as to move A to A', B is brought to B',

and so for any other point. For ^ is a point of the body,

since the triangles ANB and A'NB' are equal in all respects.

Now the triangles ANB, A'NB', have all their sides equal

each to each; therefore the angles ANB and A'NB' are equal.

Take away the common angle A'NB, and the remainder

ANA' is equal to the remainder BNB'.

Hence any motion of a rigid body, except one of transla-

tion, is one of rotation round some axis ; and this is called

the instantaucous axis.

If the body be a plane one, and be moving in its plane,

this axis cuts the plane in the instantaneous centre. To find

its position it is only necessary to take two points whose

directions of motion are known, and to draw perpendiculars

from them to these directions. Their intersection gives the

centre required.



ROLLING.

8. For the illustration of these principles consider the

motion of a circular hoop C, rolling on another cylinder 0,

which is fixed. The rolling of the hoop from position (1) to

an infinitely near position (2) may be considered as takiii!

place in one of three principal ways.

First, by two rotati(^us.

The whole hoop may rotate througli a small angle round

0, thus coming into position (o), and then a rotation round C
will bring the hoop into position (2).



ROLLING.

Secondly

:

The hoop may be translated into position (4), and then

brought by a rotation round C to position (2).

Thirdly :

By one rotation round the instantaneous centre. This

point must lie in 00; for 00 is at right angles to the

direction of motion of 0. To get another line on which it

lies, consider the motions of points veiy near to N. These

are moving away from or towards 0. Hence iVmust be the

instantaneous centre. That the body is at the moment
rotating round N will be better seen by looking on the

circles as many-sided polygons of equal sides. Each angular

point becomes in turn the centre of rotation. But the

axis is continually changing, and if the question considered

be one of change of velocity, the motion must not be con-

sidered as if it were round a fixed point at N.

If n be the angular velocity of revolution of C about 0,

measured by the angle at 0, the velocity of rotation of the

hoop round in the first method will be measured by the

angle at 0; and since the arcs of the tv/o circles which

have been in contact are equal, it wdll be

^^ ON

'

If w^e combine these by Ai^t. 6, they give a resultant

rotation round JSl.
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Tn the second method the linear velocit}^ is measured by

the distance the centre has moved, i.e. by OC.D., and the

angular velocity by the angle between CJS^ (fig. 4) and CJ^

(fig. 2), i.e. by (/ (9+^C) (fig. 2).

It is therefore O + II . -.-^

or ^•cw

ojsr

c.

oc

To reduce this to either of the others, consider the linear

velocity OC.H as the resultant of two equal and opposite

angular velocities.

The single angular velocity in the third method is the

same as in the second, but it is about N. For the whole

rotation must be measured by the same angle whatever be

the axis. Or we may see it thus. Calling it w, the linear

velocity of G due to it is w ON, and this must be the same

as that found by the last method, viz. Q. .00.

EXAMPLES.

1. If two points are rigidly connected, their velocities in

the direction of the straight line joining them are equal.

2. A mirror rotates about a vertical axis with an angular

velocity w, and a ray of light falls on it from a distant fixed

point on the horizon. What is the angular velocity of the

reflected ray ?

3. Express a velocity of 100 revolutions a minute in

units of angular velocity.

4. Compare the velocity of rotation of the earth with

the mean angular velocity of revolution of its centre.

5. If V be the linear velocity in Art. 5, which is equiva-

lent to tlie angular velocities w, - w about A and B, shew

that v = AB,(o.

G. Where is the instantaneous centre when a ladder

is slipping down iu a vertical plane between a wall and the

ground ?
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1

7. The paddle-wheel of a steamboat is rotating with

velocity co, and the vessel is moving with velocity v ; whore

is the instantaneous axis of the paddle-wheel ?

8. Prove that any motion of a rigid body of which the

points move in parallel planes may be represented by sup-

posing a right cylinder fixed in the body to roll on a right

cylinder fixed in space.

9. What are these cylinders in the case of question 7 ?

10. If a straight rod be moving in any manner in a

plane, the directions of motion of all its points will in general

touch a parabola.

11. AF, BQ are two arms moveable round the fixed

centres A, B; and the points P and Q are connected by a

link (rod) PQ ; shew that the angular velocities of the arms

AP, BQ are inversely proportional to the segments into

which the link, or its direction produced, divides AB.



II.

GEOMETRY OF MOTION.

1. We now come to the case of simultaneous rotations

about axes inclined to one another. The motions of points are

no longer in one plane or in parallel planes. It will be neces-

sary to represent the axes themselves. The way in which

an angular velocity is geometrically represented is as follows

:

take the axis xx ; on it [take a point ; let Ox be the di-

rection which is considered positive. Place a watch at

with its face towards x. A rotation whose direction coincides

with the direction of motion of its hands is considered positive.

It is measured by the line OA, which contains as many units

of length as the angular velocity contains units of angular

velocity. An angular velocity in the opposite direction is

represented by a straight line measured along Ox'.

With this convention a positive angular velocity round

Ox—one of a rectangular system of axes as usually drawn

—

will tend from Oy to Oz ; one round Or/ from Oz to Ox
;

one round Oz from Ox to Oi/.

The basis of this subject is the proposition called the

parallelogram of angular velocities, which is :

// a body have simultaneous angular velocities about two

inclined intersecting axes, and if these he represented by the

adjacent sides of a j^^if^^dleloyram, then shall the resultant

angular velocity he about the diagonal wJiich passes through

their intersection and proportional to it in magnitude.
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Let a body be rotating simultaneously about OA and OB
with velocities proportional to OA and OB,

takingThen, first, the points on OG are at rest. For,

such a point P and drawing PM, PN at right angles to OA
and OB, P's linear velocity due to its rotation round OA is

upwards from the plane of the paper, and proportional to

OA . PM\ while that due to rotation round OB is downwards

and proportional to OB . PN. As these products are twdce

the areas of the triangles OPA, OPB respectively, they are

equal. As they are opposite the point P is at rest. The body

is therefore rotating about G.

To settle its angular velocity about OC', draw a perpen-

dicular to the plane ^405 through 0, and on this take a

point Q.
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The angular velocities of the body round A, OB wiW

l>e proportional to the linear velocities of Q perpendicular to

these, i.e. Oa, Ob, which are drawn in the plane of A OB,

at right angles to OA, OB and proportional to them respec-

tively.

The resultant angular velocity about OC will be repre-

sented by the resultant linear velocity of Q, i.e. by Oc, the

diagonal of the parallelogram Oa, Oh. But the parallelograms

OA, OB and Oa, Ob are similar, the latter being turned

round through a right angle. Therefore the diagonal Oc is

proportionar^nd perpendicular to 00. And the resultant

angular velocity of the body is proportional to OC.

2. Angular velocities, then, are quantities which obey

the parallefogram law, and all its consequences will hold good

for them. A body rotating with velocity co about any axis

may be considered to have a component angular velocity

CO cos a about any other axis inclined to the former at an

angle a. There will be a parallelopiped of angular velocities:

and in general the analogy between angular velocities and

forces in" Statics is complete.

"We will take for the illustration of this the pendulum

experiment by Foucault, by which the rotation of the earth

is rendered visible.

Draw a circle representing a section of the earth through

its polar axis NS. Let be the centre, and A any place on

its surface.

In tliis experiment, a pendulum is set swinging in a.ny

vertical plane at A. We assume that wherever the point of

suspension may be, the plane in wliich the pendulum swings

will remain parallel to itself. If the earth were rotating

about OA, the effect of this would be that the plane of the

pendulum would be left behind by the earth, and would

appear to an observer, unconscious of the earth's motion, to

follow the sun. Now this is in part what happens. The

earth does not indeed rotate about OA; ils rotation is

about NS; but this is equivalent to one about OA pro-

portional to cos NOA, and one about a perpendicular to OA
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proportional to sin NOA. This latter is what carries the

building and the whole apparatus eastward. It does not
affect the present question. But the other rotation—that

about OA—causes the plane of the pendulum to follow that

of the sun with an angular velocity, which is to that of the

earth as cos NOA to 1.

This experiment requires the greatest care for its exhibi-

tion. If the pendulum move in even the most elongated

oval, instead of swinging in a plane, the axis of this oval will

rotate from a very different cause, viz. the resistance of the

air. When Foucault exhibited his experiment in Paris to

the French * savants,' he used a heavy ball hung from the

roof of the Obsorvatory, and set it off by burning a threa^d

which held the ball out of the position of rest.

3. If a rigid body has one point fixed, there is at any
moment a straight line of points at rest. In other words, any
displacement of a rigid body, one point of which is fixed, may
be effected by a single rotation about some axis through that

point. The proof is the same as that by which we shewed
that any displacement of a plane body in its plane can be

given by a rotation round one point ; if instead of a plane we
consider a sphere in the body with the fixed point as centre.

The points, then, represent straight lines through the centre;

the straight lines in the figure become arcs of great circles

and represent planes passing through the centre ; but the

reasoning is precisely the same.

Any displacement may therefore be given to a rigid body

by translating it so that a chosen point comes into its new posi-

tion, and then making it rotate round some axis through that

point. The direction of this axis and the angular displace-

ment remain the same whatever point be chosen. The
direction and amount of translation may change, but the

translation cannot affect the angular movement.

The point may be chosen so that the direction of transla-

tion is that round which the rotation takes place. For let

0' be the new position of G, and let CX be the axis of rota-

tion. Let AB represent a plane in the body perpendicular

to this axis. Let A"B' be its final position. This is parallel
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to AB; for neither the translation nor the rotation about C'X
affects its direction.

If, then, we first translate the Avhole body along a parallel

to C'X until AB comes to A'B' in the same plane with

A"B", we shall be able by one rotation about a parallel to

C'X to brincr A'B' to A"B", i. e. the direction of translation

will be the axis of rotation.

Hence every small motion is reducible to that of a screw

in its nut. And all points of any rigid body are at the same

moment moving in coaxial helices. If the pitch of the screw

be zero the motion will be one of rotation simply, if it be

infinite it will be a translation.

It is of course not always equally easy to see what these axes

and directions are. In the case of a rifle bullet, for example,

the motion is already reduced. In the general case the first

point is to find out the series of planes w^hich remain parallel,

01-—what is the same thing—to find the direction of rotation.

Thus suppose we are considering the motion of the earth at

alay instant. This consists of a rotation round its polar axis

and a revolution of its centre in the plane of the ecliptic

round the sun. And suppose we wish to reduce it to the

screw motion. We observe that the planes which remain

parallel are those parallel to the ec[uator. Hence the axis

of the screw is perpendicular to the equator. To find the

actaal position of this axis we must consider all velocities

projected on a plane parallel to the equator. Then the

motion is similar to that of the hoop in Lesson I. Art. 8,

which rotates about its centre while the centre revolves

about a fixed point.
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Let H be tlie velocity of rotation of the earth, V the

component velocity of its centre in the plane of the equator,

E the distance between two axes each perpendicular to the

equator, through the centres of the sun and earth respec-

tively. By Lesson i. Art. 8, V and H are equivalent to two

angular velocities, -p about the axis through the sun, and

VO—51 about the axis throus^h the centre of the earth. And

these are equivalent to an angular velocity round a parallel

. V
axis in the plane of the others, distant -^ — 7y from that

through the sun. This last is therefore the axis of rotation.

4. An extremely elegant geometrical conception of the

motion of a body round a fixed point was introduced by
Poinsot. Any such motion may be completely represented

by imagining a cone fixed in the moving body to roll on a

cone fixed in space. For every body with one point fixed is

rotating about a certain axis. As the motion changes, this

axis takes up different positions, and describes a cone whose
vertex is the fixed point. Now by reasoning exactly similar

to that of Lesson i. Art. 8, any cone rolling on another with
the same vertex has for its instantaneous axis its line of

contact with the other. This axis therefore describes a cone
whose vertex is the fixed point. But this is precisely the

motion to be represented. The ra.te of rotation will depend
on the dimensions of the rolling cone.

As an example of this take the case of a top spinning
with angular velocity co about its axis G, while that axis is

rotating with angular velocity 12 about the vertical V, to

which it is inclined at an angle a. By the parallelogram of

angular velocities the resultant axis is OB—between G and
OV—inclined to (7(7 at an angle given by

sin BOG _n
sin {^OL — BOG) co'

Hence the motion is the same as if an imaginary right

circular cone in the top, whose axis was the axis of the top,

and whose semivertical angle was BOG, were to roll on the

P. G. 2
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cone in space whose axis was OF and semivertical angle HOV.
As &), the anguhxr velocity of the top about C, is in general

large compared with fl, the angular velocity oi 00 about V,

the angle EOG will be small. If a series of concentric

coloured circles round be drawn on the head of the top,

that which corresponds to R will be the only pure colour

seen as the top spins.

EXAMPLES.

1. Prove that the proposition (Art. 1) holds for angular

accelerations.

2. If a ship is rolling and pitching with equal angular

velocities, what is her actual motion ?

3. Two circular discs can turn about fixed perpendicular

intersecting axes. If the axes be so placed that the circum-

ference of one of the discs (which is rough) presses against

the plane of the other, and if the former disc be caused to

rotate about its axis with given angular velocity, find the

angular velocity of the other.

4. A heavy cylindrical crushing stone rolls on a hori-

zontal table round a vertical axis. Represent its motion

(1) as two rotations, (2) as a single rotation.

5. Two bevil-wheels, with fixed axes, roll together
;

prove that the ratio of their angular velocities is that of the

cosecants of their semivertical angles.

6. Prove tliat if a motion be reduced, as in Art. 3, to that

of a screw in its nut, the translational velocity will be less

than if it had been reduced in any other manner.

7. Prove that the rotation is not altered however the

motion is reduced.
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D ALEMBERT S PRINCIPLE.

1. The ideas of force and matter would seem to be
equally fundamental. One cannot be conceived except as

acting on or being acted on by the other. Force is 'that

which changes or tends to change the state of rest or motion
of matter ;' or as Newton's first law of motion might be ex-

pressed, ' without force a body can experience no change
either in the. quantity or direction of its velocity.'

The second law is that the force in any direction is

proportional to the quantity of motion it produces in that

direction.

Two lumps of matter (masses) are defined to be equal,

when the same force acting during equal times on both
generates in them equal velocities. Two forces are defined
to be equal, when acting on the same mass for equal times
they generate in it equal velocities. Then it is found hy
experiment, that double forces acting on the same mass for

equal times generate double velocities ; and in general that

the whole force in any time is proportional to the product
of the mass moved and the velocity generated. And this

product is called the quantity of motion or momentum. The
force at any moment is measured by the rate of change of

quantity of motion, i.e. by the product of the mass and the

rate of change of the velocity.

2. Such are the laws by which the motions of a single

particle are determined. Newton's third law, promulgated

^—2
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m 1087,—tliat action and reaction between connected bodies

Avh ether at rest or in motion are equal and opposite—gives

the means of determining the motion of a system of particles.

But this was not at first appreciated. The student will find

in the second volume of Whewell's History of the Inductive

Sciences, or in Walton's Mechanical Problems^ an interesting

sketch of the errors into which mathematicians fell, and the

difiiculties they overcame before arriving at that principle

first correctly stated by D'Alembert in 1742.

The first Kigid Dynamics problem which \vas solved on
correct principles had been proposed by Mersenne in 1646.

It Avas 'to find the centre of oscillation/ or the length of

the simple pendulum which swings in the same time as any
given rigid body swinging about a horizontal axis. This

was solved by Huyghens in 1673 by the help of the correct

principle, that if a pendulum in the shape of a rigid rod

loaded with any weights make part of an oscillation, and if

then the weights be disengaged from the constraining rod

and reflected upwards with the velocities acquired, the centre

of gravity will rise to the same height as it came from. But
the main difficult}^ in the transition from a particle to a

system still remained, viz. what effect motion impressed

on one part of a rigid body has on another part.

Tn 1686 James BernoulU gave expression to this difficulty

by proposing to physicists the following query :
'• Given m, m

two ecpial bodies attached to an inflexible straight rod, which
is capable of motion in a vertical plane about one end which
is fixed; let r, r denote the distances of m, iii from this

end ; v, v their velocities for any position of the straight

line in its descent from an assigned position ; u, ii! the

velocities they would have acquired in descending the same
arcs unconnectedly. Then through the connection m has

lost u — V, and m has gained v' - it, (Query) Whether the

relation (similar to that of forces and arms in a lever)

u — v:v—u'::r':r be the correct expression of the circum-

stances of the motion ?"

The nearness of this to the true expression

—

which is,

that u, V, u', V must be the velocities acquired in an infinitely
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small time—illustrates strikingly the groping of mathema-
ticians for the principle which was to be the pillar supporting

this science.

Bernoulli's query was shortly afterwards correctly an-

swered by the Marquis de I'Hopital.

In 1716 a solution of Mersenne's problem was given by
Hermann, founded, (says Whewell), " on the statical equi-

valence of the solicitations of gravity and the vicarious

solicitations which correspond to the actual motion of each

part, or, as it has been expressed by more modern writers,

the equilibrium of the impressed and effective forces."

In 1736 Euler published his Mechanics, in which, while

recosrnizincr the correctness of the solutions of individual

problems by other philosophers, he complains that a new
geometrical solution is required for each separate problem,

and therefore tries to reduce their methods to analysis.

Thereafter the impulse .^iven by D'Alembert in 1742 caused

this science to spring almost at once into the maturity of the

present day. Before the death of Euler the solution of the

problems of the subject was pushed as far as the knowledge

of differential equations would allow.

3. The following is a translation of D'Alembert's own
statement of his principle. It will be better understood, if

it be borne in mind that forces may be measured by the

quantities of motion they give or would give were they

allowed; in fact, that for purposes of reasoning force and
motion produced are convertible. Also that a principle

proved for any number of rigidly connected particles is proved

ibr a rigid body.

" Given a system of bodies related to one another in any
manner whatever ; and supj^ose that on each of these bodies

a particidar motion is impressed, which it cannot folloiu on

account of the constraint of the other bodies; to find the

motion which each body tuill take.
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" Solution. Let A, B, C, &c. be the bodies which compose

the system, and suppose that the movements* a, h, c, &c. have

become impressed on them, which they are forced by their

mutual actions to change into the movements a , h', c\ &c.

It is clear that we can regard the movement a impressed on

A as composed of the movement a which it has taken, and

of another a; that in the same way we may consider the

movements h, c, &c. as composed of the movements 6', ^ ;

c, 7, &c. ; whence it follows that the movements of the

bodies A, B, C, &c., among one another would have been

the same if, instead of giving them the impulses a, h, c, &c.,

we had given them the double impulses a, a;b',^; c, 7; &c.

"Now by the supposition the bodies^, 5, (7, &c., have of

themselves taken the movements a, b', c, &c., hence the

movements a, /3, 7, &c., must be such that they do not

derange anything in the movements a, h', c, &c., that is to

say, that had the bodies only received the movements

a, /§, 7, &c., these movements must have destroyed one

another and the system have remained at rest.

" Whence results the following principle for finding the

motion of several bodies which act on one another. Decom-

pose the movements a, h, c, &c., impressed on each body, each

into two others a, a ; h\ ^ ; c\ 7, &c., which are such that,

had the bodies only received the movements a, h', c, &c.,

they might have kept these movements without interfering

with one another; and had they only been subject to the

movements a, 13, 7, &c., the system would have remained

at rest. It is clear that a, h', c\ &c. will be the motions

which these bodies will take."

4. Thus if the impressed forces are such as would make

a certain body acquire the velocity represented by Aa, while

its actual velocity is AA', A'a represents a velocity which the

* a on A, h on B, c ou C, &c.
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body is invited to take but does not. Aa being proportional
to the impressed force, AA' is proportional to that part of it

which is effective in producing motion, while A'a is propor-
tional to the force of constraint which that body exercises on
those arouDd it, and aA' is proportional to the force of con-
straint which they exercise on it.

We may look on this triangle in three ways : (1) that the
impressed force is the resultant of the part which has gone
to cause motion, and of the part gone to balance the force of
constraint

; (2) that the impressed forces and the force of
constraint on the body have as their result the motion pro-
duced ;

or (3) that the force of constraint on the body balances
the impressed force and gives the motion.

Any one of these forces is the resultant of the other two,
or any one reversed is in equilibrium with the other two.

So much for one body or element of mass. When the rigid
system is considered, of which this body is a part, the forces
of constraint are in equilibrium among themselves, and there-
fore the remaining two sets, the impressed and reversed
effective forces, are in equilibrium.

.
5. The first problem to which D'Alembert applies his

principle is—to find the velocity of a rod CB, fixed at C, and

loaded with any number* of bodies A, B, R ; supposing that
these bodies, if the rod did not hinder them, would have

* A,BfR here and elsewhere denote not only the positions but the masses.
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described in equal times the infinitely short lines AO, BQ,
itj([^j)erpendicular to tlie rod.

The Avliole difficulty consists in finding the length RS
traversed by one of the bodies R in the time in which it

would, unconstrained, have traversed RT \ for then the

velocities EG, AM oi the other bodies will be known. Now
consider the impressed velocities RT, BQ, AO i\^ composed

of the velocities RS, ST; BG, - QG ; AM,-OM. By our

principle the lever CAR would have remained at rest if the

bodies R, B, A had only received the velocities ST, — QG,
- OM. Hence

A,MO.AC-^B. GQ.BC=R.ST. OR

(since A . MO is proportional to the force which produces the

motion MO in the body A) ; that is

A.ACiAM-AO)+B.BC{BG-BQ) = R.CR {RT-RS).

Now AM : RS :: AC : CR,

and BGiRS r.BCiCR.

Substituting these values of AM and BG, there results a

simple equation for RS.

D'Alembert's solution, given above, is geometrical. The
analytical expressions and methods (introduced by Euler) are

so much more convenient and powerful, that they have been
universally adopted. Our future proceedings will consist in

finding convenient expressions for the effective forces, and
then solving problems by any statical method.

The reasoning by which D'Alembert's principle is esta-

blished is obviously applicable to any system of bodies how-
ever connected ; as, for instance, to fluids. The science of

fluid motion does not branch off until we come to introduce

the condition of rigidity in finding expressions for the re-

sultant of the effective forces.

C. The impressed or external forces are the cause of the

motion and of all the other forces. Which are the impressed

forces will appear by the particular system which happens to
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be under consideration. The same force may be external to

one system and internal to another.

The constraining force on A (Art. 5) is internal when the

whole system GABB is under consideration; but did we
wish to find this force of constraint, CA would be considered

as a system in motion, and the action of BR on A would be

one of the external forces. The pressure between the foot

of a man and the deck of a ship on which he is, is external

to the ship and also to him, and is the cause of his own
forward motion and of a shght backward motion of the ship;

but if the man and ship be looked on as parts of one system

the pressure is internal, and the man may dash himself as

violently as he pleases against any part of the vessel without

quickening the voyage for himself and his fellow-passengers.

It is most important that the student should have in

every problem a clear idea as to the system which he is con-

sidering.

7. Before the time of Poinsot (early in the present

century), mechanicians had no better idea of the effect of a

system of forces than that it could be reduced to two or

more forces acting at separate points. The action of a door

on its hinges was taken as consisting of forces acting at the

different hinges. This has disadvantages. When the hinges

are more than two, the forces cannot be found by the

formulse for rigid bodies. And when problems of motion are

considered, it becomes very inconvenient to have no cause

for rotation other than the moment of a force, which is

different round different axes.

This defect is supplied by Poinsot's theory of couples.

He was led to it by considering what could be the resultant

of two parallel and equal forces acting in opposite directions.

In this theory the force P acting at A is equivalent to the

parallel force P at any point and to the couple (PP),

which is reducible to no single resultant. The effect of the

force P Sit A on a given body must be the same whatever

point we may choose, for it will not be altered by our

looking at it ; but in certain cases, the most conve-

nient position of will be suggested. Thus might be
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a fixed point round which the body could turn. In that

case, P at will be a pressure, and the couple will make

o

-A.

Y
IP

the body rotate. If it be objected that the couj^le, to

/P P\
cause rotation about 0, should be f -^ , -^ j , with an arm

double OA ; the answer is, that rotation is not about a line

or point, but about a direction or in a plane; and that these

two couples are in fact exactly equivalent. Of course a single

force need not always be resolved into a force and a couple.

If A were such a point that a force acting there trans-

lated the whole body, it would not simplify our conceptions,

but the reverse, to look on it as a force causing partly trans-

lation, partly rotation. In this theory the united actions of

all the hinges of a door would be a single force and a

single couple. The couple is the same with respect to all

parallel axes, but varies in magnitude as the line of action

of the force changes.

Couples exist uncombincd in nature in the case of mag-

nets. There is no pressure on the point of support of a

magnet due to the earth's magnetic action ; for that consists

of two equal and opposite forces acting on the North and

South poles respectively.

8. Forces are also divided in Kinetics into impulsive and
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accelerating forces, i. e. into blows and finite forces. The
impulse, generating a finite momentum instantaneously, is the

simpler in theory. Time is no element in the calculation.

The other forces require time to develop a finite quantity of

motion, and their effect in an infinitely small time is as

nothing compared with that of the class of blows. They
are called finite forces. Attractions, tensions of elastic

strings, pressures of gases, are examples of this class.

There is probably in nature no perfect impulse which takes

absolutely no time in its action ; but it is usual to consider

as such all forces which produce an appreciable change of

motion in an inappreciable time, as explosions and impacts.

A blow is measured by the momentum or quantity of

motion it generates. A constant finite force is measured by
the momentum it generates in a unit of time ; a variable one

by the quantity of motion it would generate in the unit of

time if it had throusfhout that time the same mao^nitude as
. . .

at the moment of consideration, or, in other words, by the

rate of generation of momentum, or the momentum generated

in an infinitely short time (during which it may be supposed
constant) divided by this time. The total force daring a

finite time, or the force at a moment, is comparable in effect

with a blow ; but not the force during an infinitely small time.

The same laws of motion apply to both classes. Mo-
mentum o^enerated is the measure of both. Hence the fio^ures

and reasoning of DAlembert are applicable to both.

The dynamics of impulses introduces only algebraical

equations ; that of finite forces depends on differential equa-

tions. The equations of either can be deduced from those of

the other. A finite force may be looked on as the limit of a

series of small impulses ; an impulse as the limit of the total

of a very large finite force acting during a very short time.

The student must be cautioned ag-ainst reofardino^ a sudden
change or annihilation of a finite force as an impulse. If

a cricket-ball is struck by a bat, it moves off with a
measurable velocity. If it is let fall, it begins to move
with an infinitely small velocity. What is finite is the ac-
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celeration. Ao-aio, if it is movino: in one direction and is

struck by a bat, it is sent off at once in a different direction
;

but a ball rolling off a table moves at first horizontally.

But although the direction of motion experiences no imme-
diate change, the curvature of the path does ; for there is

a sudden accession of downward force, and therefore of

downward acceleration. If a body be supported by two
strings, and if one be cut, the tension of the other will be
instantaneously but not impulsively changed. No finite

change of a finite force can convert it into an impulse.

9. The effective force is that component of the impressed

force which is effective in causing motion. It is found, not

from the impressed force, but from its being the force neces-

sary to produce the actual motion, for the same motion must
alwa3^s be caused by the same force. It is the force which is

required for producing the deviation from the straight line

and the change of velocity. If a particle is revolving with

constant velocity round a fixed axis, the effective force is the

centipetal force. If a heavy body falls without rotation, the

whole force of gravity is effective. But if it is swinging

about a horizontal axis, the weight goes partly to balance the

pressure on the axis.

If the motion is known, the force requisite to produce

it is easily found. But the problem of this science is in-

verse. It is :
" Given the forces, find the motion." Now the

method of treating any inverse problem is to solve it as if

it were a direct problem, and thus get equations for the un-

known quantities. If the question is one of an impulse,

we suppose an element hm to have the components of its

velocity along the axes changed from ti, v, w to it, v\ lu.

The change of momentum is then hm{ii —u), Bm{v—v)y
Em(w' — w), and these are the measures of the components

of the effective force.

If the motion is accelerated, the rate of increase of

momentum is 8?h -, , ^m-f-, Bm-. ; and those are the
dt at at

measures of the comjoonents.

If the co-ordinates of the element hn be x, y, z, the velo-
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O T (til UZ
cities u, V, w are -^ , -j^- , -,,-, and the accelerations are

d^x d'^2f d^z—r , -vi , —r; . We will in s^eneral work with the velocities,
df ' df ' di'

*

because the connection between impulsive and accelerating

forces is brought out ; but if in any problem the position

of the system be required, it will be necessary to use the

co-ordinates. (It will be as well to mention here that for

purposes of abbreviation we will use the fluxional nota-

dx d'x
tion. Thus --. =x, -.-^ ='x\ so that %i = x and ii = x. A.^ t is

(tt Ctu

always the independent variable, this can cause no am-
biguity.)

There may be effective forces when there are no im-

pressed forces, as in the case of a circular ring set rotating

about a vertical axis and then left to itself. The effectives

are then in equilibrium among themselves. They are in

that case the centripetal forces.

It is convenient to suppose the velocity and acceleration

to increase, and therefore to suppose that the effective forces

act in the direction towards which the co-ordinates or angles

are positive. The result shews by its sign whether the

velocity is in that direction or the other, and whether the

acceleration is a retardation or not.

Example. A carriage-iuheel, whose radms is a, is rolling

ivith constant velocity v along a road. What is the force

which gives its motion to a particle (Sm) of mud on it just

passing the top of the luheel ?

The question is : What is the acceleration of this particle ?

Now this in any direction is equal to its value relatively to

any point, (say) the centre, together with the absolute ac-

celeration of this point. The acceleration of the centre is

zero. And the only acceleration of Bm relatively to it is

the centripetal one (o^a (co being the angular velocity).

V
Since the point of contact with the road is at rest, co=- .

Therefore the effective force acts towards the centre and is

Bm . —

.

a
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If the particle were now to leave the wheel and to move

freely with an acceleration P which would be vertically down-

wards, the force necessary to give this would be hn.^.

Whence we may infer that the force of adhesion to the

wheel is 3m
[
- - /3j downwards.

10. The internal forces, or forces of constraint, or the

lost forces,—as some have called them, in contrast to the

effective forces—which are in equilibrium among them-

selves, can exist only in a system of particles. They are

stresses, or couples -which we call tendencies to break, or any

molecular forces in a rigid body ; or they may be pressures,

tensions, attractions between the bodies of a system. They

vanish not collectively only, but separately, when the im-

pressed forces on the particles of the system are entirely

effective in producing motion. Thus there are no internal

pressures between a number of bricks falling in a block with-

out rotation.

To find these forces at any point, we must consider a

system to which they are external, i. e. we must reduce the

system to one bounded by the point at which they act.

11. If then a system be acted on by impressed forces

XYZ^, X^Y.^Z.,, &c. acting at various points, and if S^^^

3.7??, &c. be elements of mass at points whose co-ordinates i

x^y[z^, xij/..^, &c. and whose velocities are u^v^io^, '^^^.^^^ ^

the system of forces X^Y^Z^, X^Y^Z^, &c., and the system

are

5, du^

5. diL
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If the impressed forces are impulsive, they are in equi-

librium with

- \m [u; - wJ, - ^^m {v; - v^), - 8^m (w^ - w,).

12. It will illustrate the application of D'Alembert's

principle if we solve the following problem.

A and B are Uuo masses connected hy a rigid massless

frameiuoi'h. They receive impidses tuhich luoidd, if they were

unconnected, gener^ate in them given velocities Aa, Bb. What
velocities and directions will they take ?

The force of constraint must act along AB, for an impulse

along that line is that which neither body can obey. If then

we measure from the points a and b, aA' and IB', to

represent the velocities caused by the constraint, they will

be parallel to AB and opposite in direction, and

A,aA:=B.hB' (1),

for these represent the forces of constraint. If, further,

AB'=AB (2),

AA' and BB represent the velocities of A and B.

The process above indicated is a reverse one, and although

in the above case the positions of A' and B' can be found by

a geometrical construction, in general an equation is required.

Such is the geometrical solution.

The analytical one is derived from the condition—which

is equivalent to (1)—that the forces

A.Aa, B.Bh, -A.AA', -B.BB
are in equilibrium.

Writing down the statical equations to which this gives

rise, and the geometrical equation that the components of

AA and BB' along AB are equal—equivalent to (2)—we
can determine AA' , BB', and their directions.
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13. Let us suppose that the lever in D'Alembert's example

(Art. 5) is supported at an angle a with the vertical and then

let go, and that it is required to find the initial accelerations

The accelerations will afterwards be partly along the rod

and partly at right angles to it, but as each body begins _
to

move in a perpendicular to the rod, the initial acceleratioii

will be in that direction. If the angular velocity be called

&j, the accelerations will be

^Ot- BC'^^, BC'^.
dt .dt dt

The forces causing tliese must be

A.AC^, B.BO^, B.Bcf^,

aciing at A,B,R perpendicularly to CABR. These reversed

are in equilibrium with the weights Ag, Bg, Rg, and the

pressure on the axis C.

Taking moments about (7,

{A.AC'-VB.BC'-VR.RC')^^^

= g. sma. {A. AC+B.BG+R.RC),

which determines the initial angular acceleration.

This solution should be carefully compared with that in

Art. 5.

14. To illustrate this subject farther we will answer the

following question.

In the case of the compound pendulum^ (a rigid body

swinging about a horizontal axis), find the force which acts

on any infinitesimal part of the whole mass to balance iif^

weight and to give it its acceleration. Hence shew that if

an infinitely small mass be hung by an infinitely short cord

from a point (x, y) of the pendulum, the inclination of the

cord to X will he

,
- r/ sin ^ — d.x + w^y

tan"'—^ 3- ;—r^

,

^ cos ^ + w^/ + w iC
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the axis of x hein(/ the line through the point of support

and a fixed point in the pendulum, and co, (o heing used to

denote jr
, j.^ respectively.

It will save repetition if we mention that we shall in

future adhere to these meanings of the symbols and also use
hm for an element of mass, so that %hn is the mass of the

whole body, r for the distance of hn from an axis of rotation,

6 for the angle between a fixed line in the body and a fixed

line in space.

That -jT is the same for all lines fixed in the body may

be seen by considering one whose vectorial angle is ^ + a.

This angle a is quite independent of the time or motion,

being the angle between tv,^o lines or planes of particles.

And -,- IS thereiore equal to — ^^
—-

. -77 is m fact the
dt

^ dt dt

angular velocity of the body.

We are here asked to find the constraining force on any
element Sm situated at a point x, y, for that is the resultant

of the reversed impressed forces and the effective forces ; in

other words, it balances the weight and gives the acceleration.

Let be the point of intersection of the plane of the

P. G.
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paper by tlie axis of suspension, OV the vertical, Ox a
convenient line fixed in the pendulum ; P the position oi

8m on the positive side of Ox from V; PN a perpendicular

on Ox. Then ONisx; PN, y.

The impressed force is hm . g, parallel to V, Eeversing

this it is equivalent to

— hn g cos 6 parallel to Ox,

BrngsinO „ „ Oy.

The accelerations of P are «"?' from P to ; and cor at

right angles to OP and away from V. These are resolvable

into — co'^x along and — co'^y perpendicular to Ox,

-0)1/ „ „ (i)X „ „ „ Ox.

H>enc-e the effective forces on P are

hn (— oi^x — (oy) along and
] ^

hn (— &>"?/ 4- wx) perpendicular toj

The required constraining force is then tlie resultant of

hyi (— gcosO — co^x — coy) along and hm {g sin 6 — cory + cjx)

perpendicular to Ox.

In answer to the second part, we observe that if the ele-

ment be connected with its neighbours only by a short cord,

the tension of that cord is the constraining force whose value
we have just found. The direction of the cord will therefore

be the direction of the resultant found above, or wdll be
inclined to Ox at an angle whose tangent is

— g sin + (o'y — cox

g cos 6 + co'^x + (oy

EXAMPLES.

1. A and B are two masses connected rigidly. If A
receives a blow wliicli is fitted to impress a velocity AC,
and if it actually takes the velocity A C' ; shew that CC is

parallel to A B.
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2. A ball A is in motion. A blow is given which would
(were it at rest) impress a velocity AB on it. It moves
instead with velocity AB', With what velocity and in what
direction was it moving before ?

S. A cricket-ball is rotating with velocity co round the

direction of the line of wickets ; on touching the ground
it is acted on by an impulsive couple, which would have
given it if at rest an angular velocity co' about a horizontal

line perpendicular to this direction. Round what direction

will it actually rotate ?

4. Does the grooving of a rifle increase or diminish the

force of recoil ?

5. A blow and a constant finite force acting for half

a second produce in the same mass the same velocity. Prove
that the measure of the force is double that of the blow.

6. If i^ be a finite force which acting during a time t
causes the same momentum as a blow P, prove that

p= rFdt,
J

7. How must a particle move that the effective forces

may vanish 1

8. A carriage-wheel is rolling with given velocity and
acceleration along a road. Find the force which gives its

motion to a particle of mud passing the top of the wheel,

9. A circular ring of mass m and radius r is rotating

with constant velocity about its centre. It can bear without

breaking a stretching force T; prove that the angular velocity

must not exceed •!
[

•

[ mr J

3—2



IV.

EEDUCTION OF THE EXPEESSIONS FOPw THE EFFECTIVE
FORCES.

1. Any system of forces is equivalent to a single re-

sultant force acting at any point and to a resultant couple.

This must be the case with the effective forces of any moving-

system. These consist, if the change of motion be sudden,

of a force on each element of mass 8m whose components are

8m {u — ti), Sm (y' ~ v), 8m (lu — w)
;

if the change be gradual, of

^ du -, (Iv J dw
cm —=-

, dm J- , dm ,- •

at dt dt

If X, y, z be the co-ordinates of S??z, referred to any origin,

and S denote summation over the whole system, the resul-

tant force will be the resultant of

S 8m {iL —u)y S 8m {y —v), S 8m {lu — w)

acting at the origin. If the motion be accelerated, of

^ ^ du ^^ dv ^ , dto

and the couple will be the resultant of

1cm [y [iv - xo) - z {u - v)}, 18m [r. [u -ii)-x (^w' - w)],

18m [x {v -v)— y {ii - w)l J
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or, if the motion be accelerated, of

^^ f dw dv\ ^^ f du dw\ ^^ f dv du\

round the directions Ox, Oij, Oz.

The symbol S introduced above has clearly the following

properties

:

(1) that if a be a quantity which is the same for every

point,

2 i^m . a) = a .^Bm;

(2) that 2 (Sm U)±^ {Sm V) = S Sm (
U± F),

in which U and V are an}^ functions of x, y, z or their differ-

ential coefficients;

(3)tliat |.2(S«F) = S(S»»^).

We proceed to put the above expressions into forms more
suitable for practical purposes.

2. Let m^, ini^... be any masses; x^y x^... their distances

from a fixed plane.

If m^cCj + 77i^a?2 + . . . = (^^1 + m^ + • . )'x, x may be said to be

the average distance from the plane of all the masses. The
point determined by this and similar ecpiations for y and i is

called the Centre of Mass; a name which was first used

by Daniel Bernoulli. As masses are proportional to their

w^eights at the same locality, this point coincides with the

centre of gravity.

If we differentiate the above equation with respect to the

time, we have m^u^ + m^u^ + . . . = {m^ + m^+ ...)u, whence the

proposition ; that the sum of the linear momenta of any
masses in a given direction is equal to the momentum in

that direction of their united masses moving with the velocity

of the centre of mass. From this property the point is called

the Centre of Inertia.
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Differentiating once more we have

and so for the other component accelerations.

Hence the single resultant of the effective forces is that

force which would be necessary to move the whole mass

collected at the centre of inertia with the motion of the

centre of inertia.

These equations may be written

S i^nx) — X ^m,

S (mu) = u Xrrif

^ ( du\ du ^
^ rdt)

=
dt

-'"•

This point will in future be denoted by the letter G,

It is obvious that if G lie on the plane yz,

m^x^ + m,^x^+ = 0.

If it be moving in or parallel to the plane of yz,

m^u^ + m^u.^ + = 0,

and so for higher differentials.

3. Let any fixed point be taken as origin of coordinates.

Let the co-ordinates of any point P referred to be x, ?/, z ;

while those of P referred to parallel axes through G are

f, 7], f,
and tliose of G with respect to are x, y, z.

Then x = x-\-^, y = y + 'ny
z = z-\-^.

If 7?ij + m^ + = ^^,

we have by definition

QH^x^ + m.jr^ + = Mx,

and m^^^ + 7n^^., + =0,

whence w , - ,/ + m„ ,/ + = 0,
^ dt ^ dt

and so for higher differentials and for the other co-ordinates.
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dw . d'^zNow consider terms of tlie form my -j- , i.e. my -^

d\
,

d\ ^ r- , ^
(d"^

. dX\

+
d'~~

dx d%

- / d% d% \

The last two expressions vanish and there remains

d^z. d?z,, ,^ d'z

d't dX
+ ™.'7.^ + mA^; +

^^ d"z -.jr-d'^z
,
^-, d^K

By similar reasoning

Hence

.a..g=.wf.sa»rS
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The left-hand expression is the moment of all the effec-

tive forces about Ox, whence we have the important result

:

the moment of the effective forces on a system about any

axis is equal to their moment about a parallel axis through

the centre of inertia taken as if this axis were fixed, together

with the moment of the effective force on the whole mass

supposed collected at the centre of inertia and moving witli

it, about the original axis.

Now suppose that G is passing through at the moment
whose circumstances Vv^e are considering.

The interpretation of this is that the' moment of the effec-

tive forces about an axis through the centre of inertia is the

same as if that point were fixed.

Precisely similar results hold in the case of the following

functions
;

(all of them of the greatest importance).

^hmyz, %hnzx, l.Smxij,

thus l,hnx?/=Mx7/-{-tSm^r};

l.Bm (/ + ^'), ^^'n (r + x~), ^hn (x' -\- /),

thus

or their sums,
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«- -^'4S-^S)=^^(^i-^
dy

^^
dx\

_^ ^j. f- dy _ _ dx

~^'dt

%Sm^. tSm^, tSm^,

thus SS,.5=iff + SS„.f

.

We leave the working out of these to the student.

These equalities must be carefully distinguished from the

somewhat similar equations which arise from the properties

of relative velocities and accelerations. If G were anij point

iuhatever it would be true that

dx dx d^

di^'di'^'dt'

d^^d^ d^^

de ~ de ^ de

'

But these are purely geometrical. There is in them no

mention of mass. Now the equations which we have proved

above are physical. They are true only when G is the centre

of inertia.

4. It will be noticed that the effective forces would

reduce to a force acting at any point and a couple ; but the

centre of inertia is that point at which the resultant effec-

tive force would produce the actual motion of the point on

the whole mass collected there ; and it is also the point

which may be taken as fixed while we consider the ro-

tation.

It will, therefore, in general be convenient to choose our

origin, so that the centre of inertia is just passing through

it. But—it may be objected—our co-ordinate axes are fixed
;

velocities and accelerations must be measured by reference

to fixed points and lines. How then can we choose our

origin to be coincident with a moving point ? The answer

is : Our origin is fixed, and the centre of inertia is passing
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throiigli it at the moment under consideration. The equa-

tions are found from the consideration of the motion at an

instant chosen to embrace its most general conditions : and

provided we find the acceleration or velocity rightly at the

moment we consider, it matters not where the origin may be,

after or before. If, however, the mind of the student insists

on contemplating the motion in successive intervals, the pro-

ceedings of the origin (as we must imagine them) can easily

be represented. Suppose the centre of mass a material visi-

ble point, and suppose it illuminated by a series of electric

sparks (which do not remain on the eye, and therefore shew

a moving body as if it were fixed), then the centre of mass

will be seen by the light of the successive sparks standing

still in its different positions. The student has already come
across the same difficulty in the case of the accelerations

of a point measured along and perpendicular to a revolving

line.

5. So far our conclusions are true for any system of con-

stant mass; for systems of free particles, for strings, for

fluids. There remains to introduce the condition of rigidity,

i. e. to reduce for one rigid body the couples

'S.Sm (f (y' — v) — r}{u— t/-)},

and 28,«(^?^-,-^-

to a form directly connected with rotation.

In the general case this is beyond the limits proposed in

these introductory Lessons. Whatever problems involving

three dimensions we attempt shall be considered with the

help of the unreduced expressions.

We suppose then henceforth that the rotation is alto-

gether about the direction of Oz,

The following Lemma will be of service. If x, y be the

rectangular, and r, 6 the polar co-ordinates of a point,

dy dx _ ^ dd
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For
dii dx „ d

dt -^ dt dt©

.de

Now let r and 6 be the radius vector and the vectorial

angle of an element of mass of a rigid body, which can onlv

rotate round a fixed axis, -y- is the rate of chano^e of the
dt ^

angle between a line of particles in the body and a line fixed

in space. Therefore -j- and -j-^ are the same for every element,

being in fact the angular velocity and angular acceleration of

the body. Denote tlie former by w. Also during the motion
and for the same element Sm, r does not change.

Hence
dif dx

dt'^^di

differentiating ^"^"^^ = ^^^7

dv du\ day ^^ „

dt
Hence 2Sm^^^^^-y^J

If the change of motion be sudden,

^Sm [x {v —v)—y {ii — ii)} = {ay — w) ^hm r^.

These are the moments of the effective forces round the

fixed axis. The single resultant through the axis is the same
as through any other point, and is therefore the resultant

effective force of the whole mass collected at the centre of

inertia.

If there is no fixed axis the centre of inertia is taken

as the point, the motion of which and the motion round
which determine the circumstances. The resultant effective
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force is that of the Avhole mass collected there and moving
with its motion. And the motion round it is the same as

if it were a fixed point. The forces therefore reduce to

Mi^iL-ii), MXv'-v)

acting at the centre of inertia, and a couple {w - co) Shnr"^',

or, if the motion be accelerated, to

n.du -nrdv

dt ' dt
'

and a couple -^ ^dm r~, (r being the distance of Bm from the

centre of inertia). ^

If the system consists of rigid bodies not rigidly connected
these forces may be reduced to one at the common centre of

mass, but the couples must be taken for the separate bodies.

G. The expression ^Bm (xv — yu) or l.hn
(

?•"
-y- ) is called

the angidar momentum about the origin. It has sometimes
been called the moment of the momentum. These names
might with advantage be kept separate.

If there is a fixed axis of rotation,

If not,

^Sni {xv — 1/u) = M {xv — yu) + co SBm 7'^,

in which r is the distance of the element Sm, from the axis

through the centre of inertia. Let the term " moment of

momentum" be kept for the whole mass collected at the
centre of inertia, i.e. for the expression 31 (xv — yu), and let

the term coXSmr^ be called the ''quantity of rotational motion."
]iound a fixed axis or round the centre of inertia, angular
momentum is tlien the same as quantity of rotation.

It is important to notice that the quantity of rotational

7notion of an element is measured by the square of the
distance from the axis. Wlieu Newton attacked tlie problem
of precession, he proved that if a rotating ring commuui-
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cated motion to a mass attached to it, the whole quantity

of motion would remain the same. This is right; but
Newton measured the quantity of motion by the sum of

the linear motions of the elements, which is wrong. In
Rigid Dynamics we introduce a new kind of motion

—

rotation—caused by another kind of force (viz. a couple).

Now a couple is measured by the moment of a simple

force
;

quantity of rotation therefore is measured by the

moment of a momentum.

Imagine a fly-wheel whose mass is m and radius a, rotating

about its centre with velocity o). Every point is moving
with linear velocity aw. And therefore in one sense (ex-

cluding the idea of direction) the whole quantity of linear

momentum is maco. The impulse which applied at a point

on the wheel will stop the motion is mao). There is some-
times an advantage in considering the motion thus ; but our
knowledge of the Geometry of motion indicates distinctly that

the only complete way of treating problems of motion will be
to consider a body as animated by a directional translation

and a rotation. The whole linear momentum, in any direc-

tion, of the wheel mentioned above is zero; the angular

momentum is moJ^co. In this view the force which stops

the motion is a couple, and there is also a single force,—

a

pressure on the axle.

7. Our present results applied to those of Lesson III.

enable us to assert that the impressed forces are in equi-

librum with the forces M—r and M-^ actino^ at the centre
at at ^

of inertia, reversed, and the couple— XSjnr^ reversed. If^ at

the forces are impulsive they are in equilibrium witli

M (u' — u), M (jj' — v) and («' — co) 1,hm r^ all reversed.

8. The reduction of the expressions for the effective

forces is now theoretically complete. They have been shewn
to be equivalent, when the motion is continuous, to a resultant

force M -^ , M -rr acting at the centre of inertia and to a
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resultant couple. But practically the solutions of problems

may be much simplified by a proper choice of co-ordinates.

Thus if we use the above expressions or those in x, y when

the motion is referable to a fixed point, it is obvious that we

shall have for each problem to work through those differenti-

ations which shew that ^ and -^^,
parallel to the axes are

equivalent to .,.
- W ^J

along and -
^-^

(,- ^) at nght

angles to the radius vector.

It might be convenient to employ the expressions for the

accelerations along the tangent and normal to the path of the

centre of inertia. Or, yet again, if the motion of G is best

defined by reference to a point A which is itself moving, we

can use the proposition that the acceleration (or velocity)

of G in any direction is equal to that of G relatively to A
(supposing A fixed) in that direction, together with the

acceleration (or velocity) resolved in the same direction.

In o-eneral in every analytical solution of a motion of a

rio-id system equations are required connecting the velocities

of^ different parts. These are called the geometrical equa-

tions, and may often be simplified or reduced in number by

a proper choice of variables.

9. A system consisting of two masses A and B rigidly

connected by a straight massless luire is moving without rota-

tion with velocity Y. A j^oint of the luire hetiveen A and

the centre of inertia suddenly becomes fiived, and the system

m-oceeds to rotate about O with angular velocity w. It is

required to find the resultant impidsive forces which must

have caused this change of motion.

The momentum of translation has suffered a change,

B.OJJ.co-A.OA.co- {A + i?) V.

This therefore is the measure of the force which acting at (7

at ri^ht angles to AB would cause the change.
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The angular momentum about G has been changed from

zero to

[A.AG' + B.BG') (o.

This expression is therefore the measure of the couple

which must have caused the change.

10. Given that a circular hoop of radius a is rolling with

uniform velocity/ v aloug a road. What are the resultant

effective forces (1) on the ichole, (2) on a given part 9

(1) As the centre of inertia is moving uniformly in a

straight line, the resultant force is zero.

To find the angular velocity (w), consider the motion of

the point in contact with the ground.

This is carried forwards with velocity v by the motion of

translation. It is carried backwards by the rotation round

the centre with velocity aco, and its resultant velocity is

zero ; for it is the instantaneous centre. Hence v = a(o, or

the rotation is also uniform. Hence the couple effective in

producing rotation is zero also.

(2) Let 771 be the mass and G the centre of inertia of

the part AB, the effective forces on which are to be found.

The acceleration of G in any direction is equal to that of

C in that direction, together with that of G relatively to C
measured in the same direction. Now G moves uniformly

and G moves uniformly about G. Hence the only accelera-

tion of G is towards G and is co^. CG. The resultant effec-
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tive force on AB is therefore mco'OG, and acts at G to-

wards 6'.

The moment of the effective couple is -, '^Smr^, where r

is the distance of Bm from G. As w is constant this vanishes.

EXAMPLES.

1. Prove that the centres of mass and inertia necessarily

coincide; but that the centre of gravity does not coincide

with these unless tlie weights of the different parts of the

body may be supposed to act in parallel lines.

2. A grindstone is rotating about its axle. Shew that

its angular momentum is the same round all axes parallel

to this.

8. A cannon-ball whose mass is 30 lbs. is fired with a

velocity of 1000 feet per second. What is its momentum at

the moment of discharge ?

What is the moment of its momentum about a point

10 feet immediately above the mouth of the gun ?

4. How is the centre of inertia of a rigid body moving

when the resultant effective force is zero ?

5. Find a general expression for all functions of co-ordi-

nates and differential coefficients for which the properties of

Art. (3) are true.

G. Find the effective forces for the systems in Art. 10,

supposing the hoop to be rolling with given acceleration v.

7. Two uniform rods OA, AB, of lengths 2a, 2h are

hinged at A— being fixed—and they rotate in one plane

with angular velocities o), co'. Prove that the force which

causes the motion of translation of AB is the resultant of the

following

:

mass AB . (o)'\ h + 2a)'a cos ^-2 -^ a sin <^j along BA,

and mass AB T^ . 6 + 2 -,^ a cos + 2a)- a sin (/>! , at right

angles to BA ; (/> being the angle between AB and OA pro-

duced.
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FIRST APPLICATIONS.

1. We have now proved that the forces on each element

of a rigid body, which are effective in causing the motion,

are together equivalent to that force which, acting on the

whole mass collected at the centre of inertia, would cause the

actual motion of that point ; and, to a couple which, were

the centre of inertia fixed, would cause the actual motion of

rotation of the body. The impressed forces are also reducible

to a single force at a point and to a couple. The reversed

effective forces are in equilibrium with the impressed forces.

Putting these together, we infer (1) that the motion of the

centre of inertia is the same as if the whole mass were col-

lected there, and the impressed forces acted at that point each

in its own direction
; (2) that the eifect of the impressed

forces to cause rotation is the same as if the centre of inertia

were fixed.

These principles are fruitful of important consequences.

From (1):

If there be no impressed force or no resultant impressed

force, the centre of inertia must either remain at rest or move
on with velocity unchanged in magnitude or direction.

When a shell explodes in the air before striking, the forces

of explosion are all internal ; and the centre of inertia of all

the fragments moves on in the same curve as if nothing had
occurred. A plank sliding on smooth ice will move so that

its centre of inertia will describe a straight line with con-

stant velocity. Supposing the solar system to be so far from

the stars that their attraction may be neglected ; the centre

P. G. 4
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of inertia of the sun and planets must be at rest or moving
uniformly in a straight line. If there are no external forces

in a particular direction, or if their resultant is at right

angles to that direction, then the velocity of the centre of

inertia or the linear momentum of the system in that direc-

tion remains constant. The impressed forces acting on a
chain- shot are vertical. Hence the horizontal velocity of its

centre of inertia is constant.

In an old and instructive problem it is supposed that a

man is placed upon a perfectly smooth hard sheet of ice, so

that skates avail him nothing. How is he to get off ? The
only external forces are his weight and the support of the

surface. These acting down and up cannot help him along.

His centre of mass will not move by any action internal to

his person. He must get external force. Let him throw
away something that he has about him. This becomes a

body external to himself, and its reaction gives him an im-
pulse backwards. Or the projected body may be looked on
as still part of his system ; in which view the common centre

of mass remains at rest, but as the body moves in one
direction, his centre of mass must move in the other.

The resistance of water is very small to a boat moving
slowly through it ; and, accordingly, every one has noticed

that on his moving to the end of a boat, in order to get out,

the boat, if not previously fastened to the shore, moves back.

The common centre of mass, however, of himself and the

boat has not moved. Nor will it move although he springs

out, until by the pressure of his feet on the land he intro-

duces an external force.

Again, whatever the impressed forces may be, or vrlier-

ever they may act, they produce the same effect on the
motion of tlie centre of inertia as if they acted there.

If a ship be pulled to shore by a rope of given tension,

it matters notliing to the motion of the centre of inertia at

what point the rope is attached. A billiard-ball struck
horizontally will move off ecpially quickly wherever it is struck,

provided the force of the blow be the same. Every one has
noticed how a table-napkin ring, squirred out between the
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finger and the table, keeps rotating, but soon stops moving
away and comes back. The only impressed force is the
friction of the table. And this, though acting at the rim,

first stops the velocity of the centre and then causes it

to acquire a velocity in the opposite direction. And this

effect of the force is the same as if it acted at the centre.

2. From (2) :

If a body at rest, or moving \Yithout rotation, be acted on by
a blow or force whose line of action passes through the centre

of inertia, it will move on without rotation : if in such a case

the motion of the centre of inertia be stopped, the whole
motion vv^ill be stopped.

To pull a boat to land without making it rotate, pull it

by this point. A sportsman once told the author that a certain

salmon he hooked gave him much trouble. He tried as

usual to get the fish's head down stream, but could not.

When at last the fish was landed, he found that he had
hooked it by the belly. The scientific expression of this is,

that he had been pulling at the centre of inertia, and con-

sequently had been unable to turn the fish round.

Example.

AB is a smooth fixed inclinedj straight wire. CO is a
rod furnished with a ring O at one end by which it hangs
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from the wire. CO is taken, and being held at right angles

to AB is then let go. What will he the inotion ?

There are only two impressed forces, the weight and the
pressure. Both these act through the centre of inertia.

Hence they have no moment about it, and there will be
no rotation. Thus the rod GO will slide down, keeping
always perpendicular to AB.

8. The resultant effective couple

^^ / dv du\

is the rate of change of the angular momentum ^Sm {xv—yu).

This couple reversed is equal to the moment of the impressed

forces about the point taken as origin. Hence angular mo-
mentum plays the same part in rotation that linear momentum
does in translation. If there are no impressed forces, the angu-
lar momentum about any axis is constant. If the resultant

of the impressed forces has no moment about a certain axis, as

by passing through it or acting parallel to it, the whole
angular momentum of the system about that axis remains
constant.

In the general case, the angular momentum of any body
about any axis is equal to the moment of the momentum of

the mass collected at the centre of inertia about that axis, viz.

m (^^ — 2/ w), together with the angular momentum about a
parallel axis through the centre of inertia, w .^Bmr\

In the solar system—there being no external force—the

sum of the moments of the momenta of the sun and planets

about any axis, together with the sum of their angular

momenta about parallel axes through their centres,is constant.

When an iceberg becomes detached from near the jDole

where its motion round the polar axis of the earth is small,

and floats to near the equator where its motion is large, the

angular momentum of the earth must have diminished as

much as the moment of the momentum of the iceberg has

increased. (The angular momentum of the iceberg about an
axis in itself is neglected.) When Don Quixote was lifted up
by the windmill and became a part of its system, the only

impressed force external to both being an impulse on the
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axle of the mill, the angular momentum of the sails about

the axle must have diminished as much as his increased.

If a number of particles moving freely becomes rigidly

connected, this does not change their united angular mo-
mentum. If a rotating body contains liquid, and this liquid

solidifies, the angular momentum remains unchanged.

It has been mentioned that rotation takes place not so

much about a point as about a direction. If a watch that is

going be finely enough poised horizontally on a point, it

will be seen to make small oscillations. These are due to

the oscillations of the balance-wheel inside it. The angular

momentum of the whole watch is at every moment zero.

Hence the angular momentum of the balance-wheel, together

with its moment of momentum, is equal and opposite to the

angular momentum of the rest of the w^atch. Spin a top on

a plate, and float the plate in water. When the top has come
to rest, its angular momentum must have been communi-
cated to the floating system.

The angular momentum about a fixed axis or one through

the centre of inertia of a rigid body is

Hence ^ve are enabled to assert that if a body is rotating

about a fixed direction under the action of no impressed

forces, or of impressed forces whose resultant passes through

the fixed axis or through the centre of inertia, the angular

velocity remains constant.

A grindstone set rotating and left to itself, or any heavy

body thrown up into the air and rotating in the plane of

projection, or an awkward man upon a slide, are examples of

this.

4. It has been stated before, that the tendencies of forces

and couples are to cause translation and rotation respectively.

We now see that it would be more correct to say that they

cause translatioa of the centre of inertia and rotation round

it. A couple does not necessarily cause rotation about the

direction of its own axis. We shall soon see when this is the

case. All we can at present say is that the impressed couple
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is in equilibrium with the reversed effective couples neces-

sary to produce the motion. We have previously seen the

complete analogies which subsist between the theory of

forces and that of rotations. This analogy must not be con-

fused with the physical connection mentioned above, which

is between couples and rotations.

In 1777, shortly after our science had been established

on its present basis, an English mathematician of some emi-

nence, called Landen, wrote a treatise, in which he professed

himself dissatisfied Avith the principles and conclusions of

Euler and D'Alembert ; and in v^hich he gave a new theory

of motion of his own. This theory gave rise to a good deal

of discussion in England. When carefully examined it

is found to depend on the principle, that any force whose

effect in causing rotation in a body is the same as that of a

given force may be substituted for it. This is fallacious ; for

it takes no account of the action of a force in causing trans-

latioD. Since that time there has been no doubt thrown on

the accuracy of our principles.

5. A body is rotating ivith no impressed forces and with

constant angular velocity (o about the axis Oz, which is fixed.
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What pressures has the axis to sustain in consequence of the

motion ?

Suppose tlie axis acted on by forces X, F at (there

will evidently be none along Oz), and by a couple whose

components are G^, Gy about the directions Ox, Oy.

Consider the motion of an element of mass hn at P.

PMQL is a plane parallel to xy. PM, PL, PN are the co-

ordinates of P.

The acceleration of P is ay\PQ along PQ. This is

equivalent to — w\ PM along Ox-, - w\ PL along Oy,

The effective force at P is therefore

— hn oy^PM along Ox,

and - Bm co'^ PL along Oy,

These reversed and taken all over the body are in equi-

librium with X, Y and G^, Gy.

Hence X-\-o>'SBmPM= 0,

. Y+oy^l.BmPL = 0,

G,-co'XBmPL.PN=0,

Gy-Vco'tBniPM.PX=:0.

It must be remembered that rotation is positive from x
to y, from y to z, and from z to x.

These equations give the pressures on the axis.

Suppose the whole of Oz set free except the point 0,

and that we wished to know whether the forces of the

motion would permit the body to continue rotating about O2.

This will be the case if G^ and Gy are zero. Hence

tBmPL.PM and tBmPM.PN

must both be zero.

If these conditions hold, Oz is called an axis of permanent

rotation, or a principal axis of the body.
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If the "whole axis be set free, and the body still continiie

to rotate about it, X and Y must be zero.

Hence
S^mPil/and tBmPL

must be zero. This means that the axis O2; must pass
through the centre of mass.

It is easy to see how the axis may suffer a breaking couple,

but no single pressure. Take a rod and attach it rigidly to a

fixed axis at its centre of mass. Let this axis be inclined to

it. If it be now made to rotate it will endeavour to get into

a position perpendicular to the axis, but if it were set free

the centre of mass would not move.

6. A raft of any form, whose Qiiass is M and lulwse

centre of inertia is C, is at rest on the surface of still luater.

A man whose mass is m, who is standing at a given j^oint

P of the raft, commences to move with velocity v relatively

to the raft in a direction at right angles to CP. WJiat motion

of the raft will this cause ?

We take the man to be a moving point, and the water

not to hinder the motion of the raft.

The common centre of mass of the raft and man remains

at rest : in other words, there is no resultant linear mo-
mentum.

The velocity of C must then bo in a direction opposite

to that of the man. Let V be this velocity of C. Let O
be the angular velocity with which the raft begins to move.
Then the absolute velocity of the man is v — V— CF.D.;
the momenta are ilfFand m [v — V— CP .fl), and

- MV+ m {v - V- cr.n) = 0.

Secondly ; as there are no horizontal external forces,

the wliole angular momentum about any vertical axis re-

mains unchanged.
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Consider tlie angular momentum round C. The angular

momentum of the raft is

in which r is the distance of an element Silf from C.

The moment of momentum of the man round C is

miy+^.GP) CP due to the motion of the raft, and

— mv . CP due to his own on the raft.

Hence

,n ( F_ V + n . CP) CP+ I12S ilfr^ = 0,

which gives H in terms of known quantities.

These two equations give V and O in terms of v and

known quantities.

It is indifferent whether the unknown quantities V and

H are assumed to be in the direction in which from previous

considerations we know them to be, or in some assumed

positive direction.

7. We can now write down the equations of motion for

any system moving under any forces in one plane or in

parallel planes.

Let there be one rigid body acted on by impressed forces

reducible to forces X, Y along the axes, and whose moment
is L round the centre of inertia ; then (iv. 6) if the forces are

impulsive,

M {a' -u)= X, M [v - r) = 7,

(o)'- o})XBmr^= L.

If they are finite,

dt
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If vv^e desire to take moments about another point than
the centre of inertia; let the co-ordinates of the centre of

inertia Avith respect to it be x, y, and let the moment of the

forces about it be L' ; then, the other (quantities remaining
as before, the third equation will become

(o)' — (d) ^hmr^ + M[x{v —v)—y {u -u)]= L\

If there are a number of bodies in the system similar

equations hold for each or for any number taken together.

EXAMPLES.

1. A person, who has been standing on smooth ice, falls

down. In what line does his ceutre of inertia move ?

2. The earth in cooling contracts. Does this make the
day longer or shorter?

3. A man walks across the deck of a small yacht. Has
the yacht rotated ? Has its centre moved ?

4. Two smooth spheres rest one above another on a
smooth horizontal plane. If the equilibrium be disturbed,

in what line will their common centre of gravity move ?

5. A straight uniform rod can slide with its ends on two
smooth fixed straiglit wires placed at right angles to one
another in a horizontal plane. It is set moving. Prove
that its angular velocity will remain constant.

6. How does it appear that linear and angular momenta
obey the parallelogram law ?

7. A rigid body attached to a string is allowed to fall

until the string becomes tight. Shew that if it f^iU so that

there is no immediate rotation, there will be no subsequent
rotation.
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8. A man is being weighed in one scale of a large balance.

If he jump straight up, what will be the effect on the
machine? and what will be the result when he meets the
scale as^ain ?

9. Explain how it is that a boy in a swing can increase

his arc of swing by crouching Avhen at the lowest point.

10. If a rigid body previously at rest be set in motion
by a single blow

;
prove that after moving for any time it can

be again reduced to rest by an equal and opposite blow acting
in the same line.

11. The centre of gyration of a rigid body capable of
revolving about a fixed axis is the point at which the whole
mass must be collected, that the angular velocity communi-
cated by a given couple may be the same as before. If h be
the distance of this point from the axis, prove that

12. A man is placed in a canoe without a paddle or any
means of touching the water. Can he work round the head
of the canoe ?
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MOMENTS AND PRODUCTS OF IXEUTIA.

1. We have had occasion to remark that tlie quantity
'^07)1 r", in which r is the distance of an element hn from an
axis, and the summation extends over the whole of a rigid

body, will be of constant occurrence in problems of rotation.

It is called the moment of inertia of the body about the axis.

We have also found that expressions of the form

^hnyz^ Xhnzx, XBmxi/,

are of common though less frequent occurrence. These have
been called products of inertia.

It wdll save us much repetition if we investigate once for

all some of the properties of these moments and products,

and their values for the most common axes pf the most com-
mon bodies.

The values of moments and products of inertia must de-
pend ultimately on summation or integration for the various

elements of the body ; but after this has been accomplished
for the simplest axes possible, they can be found without
summation for any other axes.

2. The moment of inertia of a iinifonn rod of mass
m and length 2a about an auis thvoufjh its middle point at

I'lgJtt angles to it.

Suppose tlie rod a line of particles. Let the distance of

one of those from the middle j^oint be r, and its mass jihr, so

that fi2a is m.
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The moment of inertia is X/jiSr . 7^^ Supposing Sr to dimi-

nish indefinitely this becomes //-/r^ dr, the limits of r being —a

and + a. The value of this integral is —^— . But fjL.2a = m,
3

2

hence the required moment of inertia is m.-z.
o

It is clear from the nature of the expression SSmr^ that

every moment of inertia will be the product of the mass and a

square. It is usually written mF. A; is called the "radius

of gyration." It is the distance of the centre of gyration

from the axis. (See Less. V. Ex. 11.) The value of k in the

above example is --=

.

The product of inertia of the rod about two axes x, y
through the middle point and in the same plane with it, of

which X makes an angle a with the rod, is

^fiSr.xT/, i.e. S/aS?^ . r sin a . r cos a.

In the limit /z, sin a cos a I r^ dry

or /^ si^ ^ <^^s a . -^ ,

o

but /jb.2a = m, therefore the product of inertia is

a'm . sm a . cos a .
--

.

o

3. The moment of inertia of a uniform circular j^lctte of

mass m and radius a about an axis through its centre 2)er-

pendicular to its j^lctne.

Imagine the circle composed of narrow concentric rings.

Let the radius of one be r, its breadth 8r, its mass fi . 27rr8r,

so ihut /jL.Tra^ = 7n.

The moment of inertia of this ring is fi 27rrSr . r^, for all

points are equidistant from the centre. Therefore the mo-
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ment of the wliole is fi27rr^ dr, i.e. /xtt .
—

. Now/x7ra-=77?;

therefore the moment of inertia is ??i — ,
and tlie radius of

. a
Ofyration is --.

.

V2

The product of inertia of the circle about this perpen-

dicular and a diameter is plainly zero ; for the co-ordiuato

perpendicular to the circle of every element vanishes.

The product of inertia about any two axes in its plane is

also zero. For each of the axes divides the body symmetri-

cally. Hence for every element Sm at w, y Avhose product is

hm.xy, there is an element hm dX—cc,y for which the pro-

duct is — hm xy ; and the sum will consequently vanish.

4. The moments of inertia of any body about the axes

of co-ordinates are

23m (2/^ -{- z"), ISm {^ + x') , tSm {x' + /).

In the case of a body altogether in one plane (x, y), one

co-ordinate {z) is ahvays zero. Hence the moment of inertia

of such a body about an axis perpendicular to its plane is

equal to the sum of the moments of inertia about two axes

at right angles to one another in its plane. Hence Ave can

infer that the moment of inertia of a circular plate about a

diameter is m -r .

4

The products of inertia of such a body about axes, one of

which is perpendicular to it, are zero.

5. TJie moment of inertia of a uniform rigid circular

cone hounded by a iilane i:^erpendicular to the axis about its

axis.

Imagine the cone made up of a great number of equally

thin circular disks.

Let the distance of one of these fi-om the vertex be x, its

thickness hx. If the semivertical angle be «, its radius will be
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X tan a. Let its mass be /llttx^ tair a . Sx. Its moment of in-

trtia about tlie axis of the cone is mass x - tan" a,

x^
or fjix^ tan" airSx .

— tan" a.

The moment of inertia of the Avhole cone will be the sum
of all these, each indefinitely diminished, or

fjL tan^ ttTT r ''
4 , _ fJbiT tan* a. , 5

where li is the cone's height.
'^

o « 1 o
Nov*" the mass of the cone is

| ^i.i:x^ tan' adx—
.^

^l tan" octtA".

Whence

fJUlX
-J

7j = 7i tan a -y 10

6. T7ie product of inertia of an isosceles triangular plate

ABC about the base BC, a?zcZ a line through B a^ right angles to

BC.

Take BC as the axis of ^ and the perpendicular as that

of y. Draw AD to the middle point of BC. Let AD = h.

Imagine the triangle made up of infinitely narrow strips

parallel to BC, of thickness Sg, one of which is FQ, cutting

AD in L. From P, Q draw FM, QM at right angles to BC.
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Consider an element of mass ^^x .hy d<X R ^ point on

PQ. Its product of inertia is fihx . hy .x.y. That of PQ is

fxSy.yfx dx, the limits being BM and BN.

It is therefore

^'^fx^y.y.BD.PL.

Now FL={h-y)taiij, BD = htan^^;

therefore the whole product of inertia

4 f'= 2/z,.Atan'^ y(Ji-y)cy

But the mass of the triangular plate = ^Ji" tan —

therefore the product of inertia

h tan -^

= m.
3

This is easily seen to be the same as the product of inertia

about the same axes of two masses, each equal to ^ ,
placed

at the middle points of AB, A C.

There will be found in the first chapter of Kouth's Eiyid

Dynamics an instructive proof that the moments and pro-
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ducts of iuertia of a triangular plate about any axes whatever
are the same as those of three particles, each of mass equal

to one-third of the mass of the plate, placed at the middle
points of the sides.

7. When '^Smxz = and X^m yz = 0, the axis of ^ is a

principal axis (Lesson V. Art. o). When all three products of

inertia vanish we have a set of three principal axes. But
XBmxz and "XSm yz may vanish without 'Xhinxy vanishing;

and any one, as Xhmxy, may vanish without either x ov y
being a principal axis. If indeed the body is altogether in

the plane of xy, two axes for which Xhnxy vanislies are

principal axes, for we know that Xhm xz = and XBm yz = 0.

In many cases the position of a principal axis can be seen

at once. Thus at every point in a plane body one principal

axis is the perpendicular to the plane. Again, if in any uni-

form body a straight line can be drawn with respect to which
the body is exactly symmetrical, this must be a principal

axis at every point in its length. Any diameter of a uniform
circle or sphere is a principal axis at any point in its line

;

but the diagonal of a rectangular plate is not for this

reason a principal axis at its middle point ; for every straight

line drawn perpendicular to it is not equally divided by it.

8. Table of the squares of the radii of gyration for seve-

ral bodies (supposed uniform) of frequent occurrence.

1. For a rod of length 2a about a perpendicular through

the centre of mass, F= -^ .

o

2. For a rectangular plate, one of whose sides is of

length 2a, about a line through the centre parallel to the

other, k^ = — ,

o

S. For an elliptic plate about either axis,

72 _ square of other semiaxis
" 4 •

P. o. 5
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4. For an ellipsoid about any of the three axes,

2 sum of squares of the other semiaxes
k =

^
.

These include as particular cases squares, circles, and

spheres.

EXAMPLES.
1. Prove that

(a) For a straight rod of length 2a about an axis passing

through one end and making an angle (3 with the rod

Jc= -j^. a Bin p.
t\JO

(/3) For any arc of a circle of radius a about an axis

through the centre perpendicular to its plane lc = a.

(7) For a right circular cylinder of radius a about its

. , a
axis Ic == -7-, -

(S) For a straight rod about an axis parallel to itself

at distance c, h — c.

2. The moments of inertia of a uniform elliptic plate of

semiaxes a, h about its major and minor axes are

That about a perpendicular to its plane through its centre

a'+ l/
IS Qn : .

3. The moment of inertia of a sphere of radius a about

2
a diameter is ^ 7?ia'.

o •
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4 The moment of inertia of a uniform rectangular

plate whose sides are a and h about the side a is m ^ .

5. For what bodies and for what axes is the moment of

inertia zero ?

6. The moment of inertia of a uniform cube whose

leno-th of edge is 2a about a line through the centre parallel
°

, . 2r/
to an edge is m . -^ .

7. What are the principal axes of a uniform rectangular

plate at the middle point of one side ?

8. Investigate the product of inertia of a right-angled

triangle about the sides containing the right angle.

9. What is the moment of inertia of a shell, whose mass

is m and which is bounded by concentric spherical surfaces

whose radii are a and A, about an axis through its centre ?

10. The centre of a uniform parallelepiped is fixed.

About what axes will it rotate permanently when no forces

act on it but those whose resultant passes through the

centre ?

11. Prove that the moment of inertia of a uniform

ellipsoid whose semiaxes are a, h, c about the axis a is,

h^ + c^
m. —=—

.

12. The density of a cylinder of mass m and radius a

varies as the n"-^ power of the distance from the axis. Prove

that the moment of inertia about the axis is

2 71 + 2
ma .
——

;

72 + 4

5—2
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13. Prove that the quantity of rotation in a cylinder

of radius a rotating with velocity co about its axis is

(0,7)1 -r,

14. Prove that the quantity of rotation in a rotating

2
sphere of radius a is w . m . -^ a^

15. A uniform rectangular plate is rotating with con-

stant velocity about an axis in its plane through the centre.

If the centre be set free and the plate keep rotating about
the same axis, which is that axis ?

16. A grindstone of mass m and radius a is rotating

with velocity co, and is stopped at a constant rate in t seconds.

What is the rate of loss of ansfular momentum ?



VII.

MOMENTS AND PRODUCTS OF INERTIA.

1. When the moments and products have been found
about any axes through the centre of mass of a body, we can
find them at once about any other parallel axes by the theo-

rem of Lesson iv. Art. 2.

The following is a geometrical proof that the moment of

inertia about any axis is equal to that about a parallel axis

through the centre of mass, together with the moment of

inertia of the whole mass at the centre of mass about the

former axis.

Let Ax and Gx' be parallel axes, the latter through the
centre of mass. And let F denote any element of the body.

ivr

Let a plane through P at right angles to the axes cut

them in iVand 31; join these and draw FL perpendicular to

NM.
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Tlie moment of inertia about Ax is tBm PN\ Now by

Euc. II. 12,

FN^ = PM' + MN'' + 2JfiY. ML,

Hence 23m FN^ = tSm FM' + m . il/^«

{^MN.XhmML,

since il/jV is the same for all elements, being the distance be-

tween the parallel axes.

Also 23m ML is zero, since Gx passes through the

centre of mass

;

.-. ^^mFN'=l.^mFM'^m.MN\

2. If then h is the radius of gyration about an axis

through the centre of mass, and a the distance of a parallel

axis, the moment of inertia about this latter is m {k^ + a^).

Call this A. If there be another axis in the same plane at a

distance h from the centre of mass, the moment of inertia

about it is m (Jc" + 6'). Call this B. Then

A — ma^ = B — ml/,

and thus knowing the positions of two parallel axes relatively

to the centre of mass, and the moment of inertia about either,

we can find that about the other.

3. If a, h, c are the co-ordinates of the centre of mass, and

f, 7j, f the co-ordinates of any element 3m relatively to it,

23m xy = 23m f7 -f 7nah,

and SBmxz — XSm ^^+ mac.

If the centre of mass lies on the axis of x,

5 = 0, c = ; .*. 23??i xi/ = 23m ^rj, and 23??i xz = 23??z ^f.

If this line is a principal axis at the centre of mass,

XSm ^rj = 0, and 23m ff= ;

therefore 23m X9/ = 0, and 23m xz = 0,

or it is a principal axis at every point in its length.
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4, The moment of inertia of a sphere of radius a about
2

a diameter has been found to be ^ m . c^,
5

Hence about a tangent it is

2 7

o o

5. To find the product of inertia of a rectangular plate

about two sides.

The straight lines drawn through the centre parallel to

the sides are clearly principal axes. Hence the required pro-

duct is equal to the product of inertia of the whole mass
collected at the centre about the sides. It is the product of

the mass and one-fourth the area of the rectangle.

EXAMPLES.

1, The radius of gyration of a circular arc about a

line through its middle point at right angles to its plane is

radius x V2.

2. That of a circular plate about a tangent is

1
radius x ^ , .

3. Find the moment of inertia of a right cone about a

line through the vertex perpendicular to the axis,

4. The moment of inertia of a parallelogram whose sides

are 2a and 26 in length about an axis through the centre at

right angles to its plane is ^ {c^-k-Jf),

5. What are the principal axes at a corner of a square ?
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6. Prove that for an elliptic area about a line through a
focus parallel to the minor axis

P = : .

7. Prove that for a circular arc of radius r, which sub-

tends an angle 2a at the centre about an axis through its

centre of gravity perpendicular to its plane.

\ ay



VIII.

MOMENTS AND PRODUCTS OF INERTIA.

1. Having now found the moments and products of in-

ertia of a body about all axes parallel to a given set about

which they are known, we proceed to complete the subject by
finding them about sets of axes inclined to these. We will

take first the case of axes in one plane.

2. At any point of a given rigid lody and in any plane

there are akuays two axes at right angles, such that the pro-

duct of inertia about them is zero.

Let be the point, Ox, Oy any perpendicular axes in the

plane. Let the moments of inertia about Ox, Oy be denoted

by a, h, and the product SSm xy by /. Let Ox, Oy be an-

other set of axes in the plane inclined to the others at an
angle a. i. e. z xOx = i yOy = a.

'
' We will endeavour to choose a so that ^hn xy — 0.

If the polar co-ordinates of Bm be r, 6,

x = r cos Q, y — r sin Q,

X =r cos (0 — a), y =r sin {6 — ol),

XBmxy=ltBmr'sm2(^d-a)

— cos 2a 25/71 r^ sin cos

- ^^^5;am r^ (cos^ ^ - sin^ ^).
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If this vanishes

^ _ 2 SBm r" sine cos e
tan Za -

^^^^ ^^, cos^ l9"-7Qn*^ 6)

2 IBtn xif

If the distance of Bm from the plane xOy be z,

a = ^Bm {if 4- 2^),

b=^tBm(z'-\-x''),

2f
and tan 2a =-r^^^—

.

b — a

As this equation has always a solution, there is always a
set of axes having the required property.

3. Farther, for each axis of that set, the moment of inertia

is a maximum or minimum.

For let a be variable and find the value for which

2Sm(y^ + s^), or 'XBmy'^ is greatest or least,

^Bm y"" = tBm r' sin'^ {0-ol).

Differentiating with respect to a
;

2tBm / . sin (6> - a) cos (l9 - a) = 0,

but we have seen that this is equivalent to

%Bm xy — 0.

4. Farther, the moment of inertia about any line Ox' in-

clined at an angle a to Ox {5

a cos^ a + 6 sin^ 0L — 2f sin a cos a.

YoxXBm{y"-\-z')

= XBm r' sin' (<9 - a) + XBm z"

= cos'^ a XBm r^ sin'^ 0—2 cos a sin a SSm r' sin 6 cos ^

+ sin* a %Bm r^ cos" ^ + (cos^ a+ sin^ a) tBm ^
= cos'' a tBm (/ + ^') + sin* a SSwi (a;' + s*)

— 2 cos a sin a ^Bni xy

— a cos* a + Z* sin* a — 2/ sin a cos a.
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If y= 0, or if Ox, Oy are principal axes and the moments
of inertia about them are A and B, this becomes

A cos^ 0L + B sin^ a.

5. The moment of inertia of a rectangular plate about a
diagonal.

If the lengths of the sides are 2a, 2h, the moments of inertia

about two lines through the centre parallel to the sides are

'
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Hence, substituting in Art. % if a be the angle wbidi one

of the required axes makes with AB,

tan 2a =
%,AB,AJ)
Li

AB"" AD'

_ S AB.AD
~2AB'-AB''

7. There are at every j^oint of a rigid body three axes

at right angles to one another, for which the products of inertia

vanish.

We might apply the same method as before, but an

indirect method is here more simple.

Given the moments of inertia a, h, c about three axes

Ox, Oy, O^at right angles; and the products d,e,f\ [^hnyz,

l^Sni zx, '%hn xy respectively) let us find the moment of inertia

about a line Ox inclined at angles a, /?, 7 to Ox, Oy, Oz.

Let OL, LM, MP be the co-ordinates x, y, z of an ele-
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ment of mass Sni at a point P. From Plet fall P^ perpen-
dicular to Ox\

Projecting 0L3IP on Oi/,

OJS^= OX cos a + />i/ cos y5 + 2IF cos 7,

and FN' == OP' -OF'-,

/. PjV'^ = ix^^ + y + £^ — (:c cos a + ?/ cos /3 + 2 cos y)'^

= x\l- cos' a) + ?/' (1 - cos' ^) + 5' (1 - cos' 7)

— 2j/z cos /3 cos 7 — 22X cos 7 cos a — 2;cy cos a cos /?.

But cos' a + cos^ /3 + cos' 7 = 1;

.-. FN' = ^' (cos' /3 + cos' 7) + 7/ (cos' 7 + cos' a)

+ ;s' (cos' a + cos""/8)

— 2j/;<; cos /8 cos 7 — 2zx cos 7 cos a — 2x2/ cos a cos l3

= cos' a (?/' + s') + cos'/3 (^' + x') + cos' 7 (x' -f- ?/')

~ 2^^ cos l3 cos 7 — 2zx cos 7 cos a — 2x2/ cos a cos /3

;

.% SS//i PiV = a cos' a + Z> cos' /3 + c cos' 7

— 2(f cos /3 cos 7 — 2e cos 7 cos a — 2y cos a cos /5.

To represent this geometrically take a point Q on ON.

Let its distance from be p^ and its co-ordinates ^, rj, f

;

then f = p cos a, 7j = pcos jS, ^= p cos 7,

and

S8..P^-==-g^-^^-^'^-^-^-f^^-^^^^-^^^^

Now the equation

af + hrf + or - 2c^;?r- 2erf - 2f^rj = 1

denotes an ellipsoid whose centre is at ; for a, h^ c are

necessarily positive. If then Q is a point on this

tBmFN' = \,
P 1
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or the moment of inertia about any line through 0, is mea-

sured by the square of the reciprocal of the radius vector of

this ellipsoid which coincides with the line.

This is called the momental ellipsoid. It has no physical

existence, but is an artifice to bring under the methods of

geometry the properties of moments of inertia. The mo-
mental ellipsoid has a definite form for every point of a

rigid body.

If this ellipsoid be referred to another set of axes, and its

equation become

a'P + 6V + cV - ^d'v^- 2e'r? - 2/f77 = 1,

the coefficients a\ b', c will be the moments of inertia about

the new axes, and d', e,f will be the products.

Now every ellipsoid has three axes, to which if it is

referred its equation takes the form.

With respect to these axes, the products of inertia vanish.

8. Hence we see that the moment of inertia about one of

the principal axes is the greatest, and about another the

least possible. It was from this property that Euler, who
first thoroughly investigated the subject, gave them the

name.

It is now clear, that for all questions depending only on

moments and products of inertia, any body may be' replaced

by its momental ellipsoid. And farther, that any two

systems which have the sfime momental ellipsoid at a point,

are about that point kinetically identical.

If the moments of inertia of a body about three axes at

right angles through a point are equal, the ellipsoid becomes

a sphere. They are therefore equal about all axes, and

every axis is a principal axis. The body is then said to be

kinetically symmetrical with respect to that point. Thus a

cube is kinetically synnnetrical about its centre.



KINETIC CENTRE. 79

• The following question is of some interest.

9. Under what circumstances is there a j)oint in a hody
such that the moments of inertia about all axes through it are
equal ?

If there is such a point, all sets of axes through it are

principal axes.

Let the co-ordinates of the point referred to the principal

axes at the centre of mass be a, h, c. Then the products of

inertia of the body about the parallel axes through the
point are

m .he, m . ca, m . ah^

for those about the axes through the centre of mass are

zero.

If all axes at the point are to be principal axes, these

must be so

;

.'. he = 0, ca— 0, ah = 0,

equations which require that two of a, h, c should be zero.

Let & = 0, c = 0, then the point required lies on the axis

of X,—one of the set of principal axes at the centre of mass.

But further, it is necessary that the moments of inertia

about these axes should be equal. Let A, B, G be the
moments of inertia about the axes through the centre of

mass. Then those about the parallel axes through the point
required are

A, B+ ma^, C+ ma^

If thfese are to be equal, we have

B=G and A-B = ma\

Hence our condition is, that two of the principal mo-
ments at the centre of mass should be equal. In other
words, the momental ellipsoid at the centre of mass must be
a spheroid. And then the point lies on the unequal axis at

a distance from the centre equal to
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EXAMPLES.

1. Given A, B the moments of inertia of a body about

two principal axes Ox, Oy, prove that the product of inertia

about axes Ox , Oy in the same plane, inclined to the

former set at an angle a, is

2. Prove that any two of the principal moments of

inertia are together greater than the third.

3. No ellipsoid except a sphere can be its own mo-
mental ellipsoid at its centre.

4. Every elliptic plate is similar to the section of its

momental ellipsoid made by its own plane.

5. If a, h, c are the semiaxes of the momental ellipsoid

of a rigid body in order of magnitude, shew that

ah
c is greater than

Va-' + Z/^

6. Given the angular velocity of a body which is ro-

tating about a fixed point; about what axis must it be

rotating, so that the angular momentum shall be greatest 1

7. Two systems of equal mass have the same principal

axes, and the same moments of inertia about them at

some one point; prove that they have the same principal

axes at any point, and the same moments of inertia about

any axis.

8. Prove that there can always be foimd three points,

one on each of the three principal axes of any system at any
point, such that the momenta and products of inertia of
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three suitable equal masses collected at them, are equal to

the moments and products of inertia of the system about

any axes whatever through that point.

9. If these equal masses be each one-third of the mass
of the system {m), shew that the distances of the three points

along the axes are

(3 (B+C-A) [^ r3 {Cj-A-BYi^ j 3 (A -{- B - C) ]^^

[2 m J
' [2 m }

' -[2 m
J

*

10. In a triangular plate ABC, D is the middle point

of BG, and E the foot of the perpendicular let fall from A on

BG. Shew that the middle point of DE is the point at

which i?(7 is a principal axis.

11. Shew that the difference of the moments of inertia

of a body round two axes in a given plane which are equally

inclined to a fixed line in the same plane, is proportional to

the sine of the ande between those axes.

P. G.



IX.

€ASES OF MOTION WITHOUT EOTATIOX.

1. The complete solution of a problem of motion would

involve the finding of the position of the system at a given

time, of the velocities at a given time or in a given position,

and of the values of any previously unknown forces, such as

pressures or frictions which may act on the system. If the

forces are impulsive, only velocities and forces can be re-

quired ; for the position is unaltered during the impulse, and

to follow the subsequent changes belongs to a separate pro-

blem of the other kind. Questions of impulsive motion can

then always be solved, for the changes of velocity and the

forces appear as unknown quantities in equations which are

in general simple algebraical equations. But if the forces are

of the kind called finite, the equations of motion are differen-

tial equations of the second order as regards co-ordinates of

position. In some simple cases these can, be completely

solved and the requirements of the above solution satisfied

;

but in more complicated cases we can get no farther than a

first integral, that is, an algebraical equation giving the velo-

cities. In such a case to find the position at a given time is

impossible. Our demands must be limited by what we can

get; and the words "to find the motion" have come to

mean, "to find the velocities of the system in any position."

We will therefore in general use velocities and their first

differential coefficients in the expressions for the effective

forces; but if, in any case, the co-ordinates of position must

enter, we can use their first and second differential coefii-

-oients to express velocities and accelerations.
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The imknown external forces can nsually be found, for

they depend on accelerations and velocities which by the

solution have been made to depend on the co-ordinates of

position.

An important class of problems has to do with finding

the stresses or internal forces at a given point of a body.

The action of one part of a body on another is threefold. It

may consist of a longitudinal stress, normal to the plane of

separation, a transverse or shearing stress, tangential to the

plane of separation, and a bending or breaking couple. These

are found by considering them as forces external to one part

of the body. As in the case of the external pressures, the

motion of the whole must first have been investigated.

The first difficulty of a problem in Eigid Dynamics is

overcome when by the reversing of the efiective forces the

whole is reduced to a system in equilibrium. Any method

which is available to find the forces or the position of equili-

brium of a system is equally available here to find the un-

known forces or the state of motion of a system.

In a problem of any complexity it is an assistance to

draw two diagrams ; one kinematical, representing the

changes in the velocities or the accelerations; and the other

dynamical, representing the resultant reversed effective forces,

and the impressed forces. This is done in Art. 4 of the pre-

sent Lesson.

2. A uniform rod AB of mass m and length 2a is let

fall in a horizontal position. After falling through a height

h it is brought to rest by its ends striking two fixed sup-

ports at the same level. What will he the breaking couple

at a point P ?

The stress couple or, as we may call it, the bending or

breaking couple in a system in equilibrium is equal and

opposite' to the moment of all the other forces acting on

either of the parts of the body which are separated at the

point imder consideration.

The rod in falling through h acquires a velocity ^l2gh.

G—

2
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This is stopped suddenly by two equal pressures. Heiiee each

. 711 \/'2(j/l

01 these is—^
.

Consider the part AP. It is in equilibrium under the

012/ r

jiction of BP, the stopping blow -~ \l:Lgh acting upwards at A,

and the reversed effective force acting at the middle point of

AP. This is the force which has changed the momentum
from mass AP x \l''lgh to zero. It is therefore

— m -^ . ^'Igh, acting downwards.

j[p
Reversed it becomes on ——. x ^/2qh, actin^^ downwards.AB ^ ^

The action of BP on AP may be composed of a force and
a couple. Taking moments about P we shall avoid the force,

.111 i-T~T A-ry ^P /^V~r ^P
and the couple = — . \/:igli . AP - m --r . V Zgli . —

^

m ,-—^ AP.PB
2 ^ Ah

8. A siraiglit rod AB of mass m hangs from a fiived

point O bg an elastic string {natural length, a, modulus of
elasticity A.), n.vhich is fastened to the end A. It is pulled

down and then let go. Find the longitudinal stress at any
point P, ivhen the j^oint A is at a distance x heloiu O.

The part BP is in equilibrium under the stress of AP
upwards, its own weight downwards and the revei'sed effec-

tive force at its centre of inertia. To know the effective

force we must first know the acceleration. Thus we must
first consider the whole rod AB.

This is in equilibrium under the tension, its own weight

and its own resultant effective force reversed.

Let the downward velocity of the centre of inertia be v.



NO ROTATIOX. 85

The effective force is then m -r- or mv -r- actin^^ down-
dt ax °

wards. Then the forces mg downwards and niv j- and T

(the tension) acting upwards are in equilibrium

;

dv rrr , 1 ^ ^ ^ — <^

,*. mv -1- =— I +mq, and 1 =X :

dx ^ a

dv ^ x — a
.'. mv ~j- = — \ h mq.

dx a '^

Were the velocity required we should integrate this. As
it is we can return to the consideration of BP. The accele-

ration of every point on the rod is the same. Hence the

effective force on BP is

mass BP x v . -r- downwards,
dx

BP dv ^. , ,

or m . -T-h • '^ ~r actmg downwards.

BP is in equilibrium under this reversed and the stress,

and m . -r^ . q acting^ downwards.AB ^ ^

Hence the stress is

BP BP dv

''''AB^-'''AB''dx'

but onv -r- has been found above. Substitutino- •

dx

^ p ^ x-a BP
stress at P = \. . —rj^

.

a AB

4. A wedge B whose angle is a and whose faces are

smooth, rests with one of them in contact luith a horizontal

table. A rigid body A with a pla7ie face is placed on the

other with the plane face in contact luith it. What luill he the

velocity of each at any subsequent time ?



86 PROBLEMS.

Taking both bodies as one system, the impressed forces

are all vertical. Hence the common centre of inertia will

have no horizontal velocity; or—what is equivalent—there
will be no horizontal momentum of the system.

If u be the velocity of the wedge, and v be that of A
relatively to the wedge, i.e. down the incline, the horizontal
velocitv of ^ is u — v cos a.

Hence A {u — v cos a) + Bu = . ..

.

Next consider A, Its effective forces are

(1).

du dvA -77 horizontally, A -y- down the incline,
dt dt

and its impressed forces are its Aveight and the pressure
which acts at right angles to the incline. Therefore re-

versing the effectives and resolving along the incline,

at
A

-J-
cos a = Ag . sin a (2]

A-i^ /A;

These two equations suffice to determine u and v at any
time.

The investigation may bo continued by finding the pres-
sure between B and A, also by finding the actual positions
of A and B in terms of the time.
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EXAMPLES.

1. A railway train is going along a level with constant

velocity. The friction of the rails is for each carriage one-

hundredth part of the pressure. What is the tension of the

couplings of the last carriage if its mass is 2 tons ?

2. Find this tension ; supposing the mass of the carriage

to be m, the coefficient of friction ^la, and the train to be

running down an incline of one in h, with an acceleration /3.

3. Prove that the transverse stress at P, in the system

of Art 2, is

-.J'lgh -j^ .

4. A man is placed on a long boat which rests on the

surface of still water. Shew that if he could walk with

absolutely constant velocity along it, there would be no

horizontal force between his feet and the boat except when

starting and stopping.

5. A system consisting of two uniform rods A C, CB,

rigidly connected at right angles at C, falls without rotation

in°a vertical plane, and strikes a smooth horizontal plane at

B ; if there is no rotation produced by the impact, shew that

the inclination of BG to the horizon is

,
_,BC{2.AC+BC)

tan -jjf, .

Find in that case the in^pulsive breaking couple at C.

6. Two small balls each of mass m, are placed at the

ends of a diameter within a circular tube of mass 4^m lymg

on a smooth horizontal table, and the balls are connected by

elastic strings within the tube which are stretched to twice

their natural length. One of the strings suddenly breaks.

Prove that when the other resumes its natural length, the
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centre of the tube is moving with a velocity (-^^Y, where a

denotes the radius of the circle, and e the original tension of
the string.

Find all the circumstances of the problem when the balls

meet.

7. A wedge B, whose angle is ^, is laid on an inclined
plane whose inclination is a + /3, with its edge toward the
upper part of the plane. The wedge being at rest on the
l^lane, a body M is projected along its upper surface from
the base with a velocity due to a height a tan /S, where a is

the length of the upper side of the wedge ; the coefficient of
friction for either surface of the wedge is tan jS, and the
motion takes place in one vertical plane. Shew that during
the motion of the body on the wedge, the wedge will not
slip provided the ratio of M to B is greater than that of

tan a to tan /5.

Shew also that the body comes to rest before reach ino-

the edge of the wedge, and that the wedge will immediately
begin to slide down the incline, but that the body will not
.slide on the wed ere.



X.

FIXED CENTRES.

1. It will be remembered that the effective forces on a

rigid body of mass m, whose centre of inertia is (7, rotating

about a fixed axis 0, and having a radius of gyration h about

an axis through G parallel to the fixed axis, were reduced, if

the change of motion was sudden, to a force mOG [m - «)

acting at G at right angles to G, and a couple mlc^ («' - «),

or, which is equivalent, to a force m 0G{(o' — (o) at and a

couple m (Jc^ + OG'^) (ft)' — ft)) ; if the motion was accelerated

they were reduced to forces at G,mOGo)^^ along GO and

mOG~p at right angles to GO, and to a couple '^^^-j^ >
or,

what is the same thing, to a force at G, mOGw^ along (rO,

a force mOG -y- at 0, and a couple m ik'^ -i-OG^) -j,.

In our diagrams we will represent couples by arcs of

circles. The positions of these may be any whatever, for the

effect of a couple is absolute, mic' will always be employed

to denote the moment of inertia about the centre of inertia.

2. The problem of determining the law under which

a heavy body swings about a horizontal axis is one of the

most important in the history of science.

A simple pendulum is a thing of theory ; our accurate

knowledge of the acceleration of gravity depends therefore

on our understanding the rigid (or compound) pendulum.

We have seen that it was the first problem to wdiich D'Alem-

bert applied his principle.



90 PROBLEMS.

The name of the problem in those days was the ^centre
of oscillation.' It was required to find if there were a point
at which the whole mass of the body might be concentrated,
so as to form a simple pendulum whose law of oscillation

was the same.

Let the plane of the paper be that in which G the centre

of inertia swings. Let be the intersection of the axis with
that plane. Take G as the line in the pendulum by which
its rotation is measured. Let 6 be the angle which OG
makes with the vertical. Let k be the radius of gyration
about an axis through G parallel to the fixed axis ; let OG
be called h, and let m be the mass of the body.

771 Q»

The only impressed force which has a moment about is

mfj, the weight acting at G. The anovular acceleration is

./ , and the rate of mcreasc of the angular momentum
(It

(T-em (/j^ + 7r) is the measure of the effective couple.
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Reversing this, it must be equal and opposite to the mo-

ment of mg round 0.

Therefore m (F + ¥) -^ + mgh sin ^ = 0,

d^O ah . Q cw
W'=-vvl?-''''^

^''-

Multiplying hy 2 -7- and integrating

If the pendulum began to move when 6 was equal to a.

It + /J

^^"'i
fiy=/ii('^°^^-'^°'"^

^'^-

This equation cannot in general be integrated farther.

It is therefore not possible to- find the position in terms of the

time. Equation (2) enables us, what is very important, to

find how far the pendulum will go with a given initial angu-

lar velocity ; for a gives the position of instantaneous rest.

If then the angular velocity is O when 6 is zero,

If a = .r, O - ' ^''

kr^lt"

this is the least angular velocity at the lowest point which

will send the body right round.

If VL is less than this, the motion will be one of oscillation

about the lowest position.
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3. The most important case is when the angle of oscillation

is very small. Then —̂ — differs infinitely little from unity,

and the equation (1) becomes

cr0_ gh

df A•^ + ^•''

The solution of this (Lesson XV.) is

and indicates an oscillation, called a simple harmonic

motion, whose complete period is lir a/ —-.— .

If I be the length of a simple pendulum its equation of
motion is

df I
•
^'

If the times of oscillation of these are equal,

, ¥ + 1=' , //

If a length 00' equal to this be measured along OG, 0'

is the centre of oscillation. It is clear that OG. 0'G=]c\
Hence and 0' are convertible. If the pendulum be hung
up by 0', will be the centre of oscillation.

In the above work the assumption has been made tliat

the solution of
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differs infinitely little from that of

when 6 becomes infinitely small.

The time of oscillation of a compound pendulum depends

on li -{-
Y' Ii^ calculating the value of g from pendulum

experiments, the main advantage is that the time of ope

oscillation can be very accurately measured. The difficulties

are the determination of h and k. The point G cannot be

got at, and as every body is more or less irregular and

variable in density, k cannot be calculated with sufficient

accuracy. These quantities must therefore be determined

from experiments. Bessel observed the times of oscillation

about different axes, the distances between which were very

accurately known. Captain Kater employed the property of

convertibility.

4. Another interesting application of the present problem

is the old way of measuring the velocity of a bullet or cannon-

ball. The ball was fired into a mass called Eobins' ballistic

pendulum ; which was thereby set off with a certain angular

velocity about its axis. The angle through which the mass

ascended was found by the length of a piece of tape which

w^as fastened to a point in the pendulum, and came through

a slit immediately below the axis.

Hence by equation (2) the initial angular velocity was

calculated. But, the mass of the cannon-ball being m, its

velocity F, the common initial angular velocity of it and the

mass (if) o), the distance of its passage below the axis p, the

angular momentum of the bullet about the axis before im-

pact was m Vp, and after it sticks in the mass, mp^co. Now
the angular momentum gained by the mass must be equal to

the moment of the momentum about the axis lost by the

bullet. For, considering the two as parts of one system,^ there

is no external force that has any moment round the axis.

Hence mVp- mp'^co =M {k^ + h^)o).

From this V can be found.
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Hutton used to suspend his cannon as a pendulum, and
measure the angle through which it was raised by the dis-

charge.

5. A plane hodi/ at rest has a fixed point in it. It is

struck hy a bloiv in its oiun plane. Hoiu must this act that

there may he no pressure on the fixed p)oint ?

Let be the fixed point, G the centre of inertia, mJc'^ the
moment of inertia about G, co the angular velocity produced,

P the blow, p the distance of its line of action from 0.

The velocity of G is changed from zero to OG . w, which
requires a force ')nOG . « at G. And the angular momentum
about G has been changed from zero to mFo), which requires

a corresponding couple.

If there is no action on the fixed point, P is in equilibrium

with a force —m . OG . co, and the couple — mk'-co. Hence P
must act at right angles to G, and

P = vi.OG.(o, P (p - OG) = mJrco,

yr.2

wdience p= 0G+ -^-^ .

The name 'centre of percussion' has been given to the
point of action of P when there is no pressure on the
axis. If there be no fixed j^oint and if the blow act at

this point, the point will be the centre of siDontaneous
rotation.

G. A body is moveable about a fixed j^oint 0. It begins

to move luith given angular acceleration t: about the line Oz.

What cojiple has p)roduced this motion "^

Let the magnitude of the couple be G, and let its axis

make angles a, (3, y with the axes Ox, Oy, Oz,

The impressed forces are the couple G, and the action of

0. We will take moments about axes through 0, and so

avoid this latter.
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If X, y, z are the co-ordinates of an element Zm, and r its

distance from Oz ; its accelerations are o)^ . r towards Oz and

— r parallel to the plane xy, and perpendicular to r. Now
at

in the very beginning of the motion w is infinitely small, but

— is finite. Therefore the latter is the only acceleration
dt

that requires an effective force. This effective force

<^^^^ r is equivalent to tvro, viz. ^ ^"^ -J. V parallel to Ox,

and dm -^ x parallel to Oy. (See fig. Y, 5.)

at

Keversing these for all the elements, and taking moments

about the axes,

G.cosa jT. Xhnxz = 0,
dt

G cos/3
J,

^^>ny^ = ^\

6^ cos 7 Yj.
SSm?'^ = 0.

dt

Whence the cosines of the angles which the axis of the re-

quired couple makes with the axes are proportional to the

products and moment of inertia e, d^ c (Lesson viii.) ; and

the moment of the couple is

The student of solid geometry will have no difficulty in

proving that this axis is the radius of the momental ellipsoid

of the body at 0, diametral to the plane of the couple.

Similar reasoning holds in the case of an impulsive

couple. So that in general a couple will tend to cause

rotation round its own axis only when this is parallel to one

of a set of principal axes.
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7. A uniform triangular j^lctte ACB right-angled at C,
V.y rotating about CA as a fixed liorizontal axis. Find the
ivrench couple in the vertical j^lctne through the axis when the

2)late comes to he horizontal in its descent.

rrifj - m a}IS Q-

Let tlie angular velocity in that position be &). Let G
be the centre uf gravity, LtN a perpendicular to CA. Let
m be the mass, and let a and h be the lenoths of CB, CA.

The moment of inertia about CA is, by Lesson VJ, m

Hence the value of the angular acceleration in this

position is, by Art. 2,
2.7

The impressed forces are the Aveight and the actions of

the axis. We are only concerned Avith that one of them
which is a couple in the plane VGA, Call it L. The effec-

tive forces are mw^ KG along ON at G, and m - NG ver-
at

tically downwards at G, of which only the latter has a
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moment about BC) and a couple round an axis through G
parallel to GA, which has no moment about BC,

Reversing these and taking moments about CB,

L + mg . Cy- m -NG"^^^. CN =^ 0,

and CN= ^

,

o

whence X = ~- .

8. A uniform rod OA, of mass m and length 2a, sivings

as a pendidum about O. Find the components of stress at a
point P distant 2b from A, when the rod has reached a position

inclined at an angle to the vertical.

We know from Art. 2 that the angular acceleration -^
is equal to

% sin
'

4<a '

and that the square of the angular velocity f -%- j is

7,*^ (cos 6 — cos a),
2a ^ ^

in which a is the value of 6 when the velocity is exhausted.

Let us consider the part FA, The impressed forces are

m-.g acting at G, its centre of inertia ; and the required

action of OF, which we will take to be (1) a longitudinal

stress T along F 0, (2) a transverse stress S at right angles

to FA ; and a couple L.

-77) aloncr GO, and©
G . —, 2 ^t right angles to G 0. Hence the reversed effec-

tive forces are

mli2a-i)(§)' (1),
4tJ

p. G.
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and (2),

aciin«- at G along and perpendicular to 0G\ and a couple

1) ¥ ere
m

a ' 3 df
'

mbg ^

Resolving for FA along and perpendicular to FA,

/_,H_^cose--^-(2a-&)y =0.

S-m^g.me-
^ (2a - i)

^^,
= 0.

Taking moments about F,

L-m -asm 6--.-- , .^ (2a -I) ,., = 0.
a*^ 'Sa df a ^

^
'Sa df

Substitutincr the values of

dC

d'd - fd6^'
-, and -

df lit
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we have

T=—- \co^d \- -^
t:: (cos 6— COS a) \

,

a { a 2^ ^

^ ml) . .{. i2a-h)SS=— ^sm ^^1 —
a

[
4ia

mh . ^fSb \

EXAMPLES.

1. Explain why it is easier to support a long rod in a

vertical position on the tip of the finger than a short one.

2. A uniform rod of length 2a can rotate about one end.

It is allowed to fall from its position of unstable equilibrium.

Prove that its angular velocity when it is horizontal is

V 2a

3. A bar magnet is suspended in such a manner that it

can oscillate in a horizontal plane. Shew that its moment
of inertia about the line of suspension can be determined by

observing the times of oscillation with and without small

pieces of lead attached to it.

4. A perfectly rough cube is placed on a horizontal

plate. Determine the initial motion of the cube if the plate

is made to begin to move with a given velocity, in a direc-

tion at right angles to one of the faces of the cube.

5. A rectangular uniform plate, moveable in every

direction about its centre which is supported, rests horizon-

tally ; if a heavy adhesive particle be placed at one corner,

prove that the rectangle will begin to move about that

diagonal which does not pass through that corner,

7^2
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6. Mersenne and otliers, in seeking for the centre of

oscillation, assumed that it was the same as the centre of

percussion. Why is this guess right ?

7. A slender circular ring is cracked at one point, and

is made to revolve in its own plane about the opposite point,

with a constant angular velocity co ; shew that the tendency

to break when greatest is measured by a couple whose

moment is

27r ' cos</)'

where m is the mass, a the radius of the ring, and a^ is the

arc contained between the fixed point and the point where

the tendency to break is greatest.

8. A uniform semicircular arc of mass m and radius a

is fixed at its ends to two points in the same vertical line,

and is rotating with constant angular velocity w. Prove

that the horizontal pressure on the upper end is

TT

9. If the semicircle in the previous question had an

angular acceleration w, shew that there would be another

horizontal pressure at the upper .
support at right angles

to its plane and of magnitude

10. A uniform rod of length 2a is suspended by a

point in its length distant h from the centre of gravity.

Prove that the time of oscillation is a minimum when

11. A uniform rod of mass r.i makes small oscillations in

a vertical plane inside of a smooth right circular cylinder of

radius r, Avhich is fixed with its axis horizontal. If the rod

subtend an angle 2a at the centre of the cylinder, prove that

the length of the simple equivalent pendulum is

1 + 2 cos'a

S cos a
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12. A physical line fixed perpendicularly to an axis

in its own plane revolves about tliat axis with a given
velocity ; find the pressure on the axis. Supposing the axis

to be set free, about what axis will the line now move ?

13. If a uniform rod capable of turning about one fixed

extremity be struck by a given impulse at any point, find

the point at which the tendency to snap in two is greatest.

14. A straight heavy rod oscillates about one end in a

vertical plane, coming to rest in a horizontal position ; shew
that if (^ be the angle included between the direction of the
rod and the direction of the pressure upon the axis at any
time, and 6 be the inclination of the rod to the horizon at

the same time, tan
(f)
tan = -- ,
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MOTION OF ONE BODY.

1. When the forces have been found wbich are in

equilibrium with one another, we employ any statical

method to obtain the equations of motion. Thus we resolve
the forces along' two directions at right angles, and take
moments ahcut a point. The resolutions present no diffi-

culty. Taking moments round an axis means that w^e ex-
press the conditi.cn that the forces shall have no effect in
jDroducing rotation round this axis. The effect of a couple
is the same about whatever point in its plane the motion be
considered ; in other words, a couple has always a certain

absolute rotational effect. The effect of a force not passing
through the axis is the moment of the force about the axis.

Now in the problems which are about to engage our
attention, we shall find couples and moments mixed up.
There will be effective forces at the centre of inertia, and an
effective couple. There will be impressed forces acting at

various points, and occasionally an impressed couple—for

example, a tendency to break. Taking moments about
any point will be expressing the condition that the alge-

braical sum of the couples together with the algebraical

sum of the moments about the point of the unreduced forces

is zero.

Or, if it seems convenient, each impressed force may be
reduced to a parallel force acting at the point round which
moments are to be taken and a couple. Taking moments
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will tlien be equating to zero the algebraical sum of all the

couples.

Forces may be resolved in any convenient direction, and
moments may be taken, not only about the centre of inertia,

but about any convenient point. This direction and this

point are fixed. There is no such thing in Dynamics as

resolving along a moving direction, or as taking moments
round a moving point. Force is absolute in its action. The
point round which we take moments may be defined by a
certain point of the moving system passing through it at

the time, but it is itself fixed.

(mF will always be used to denote the moment of in-

ertia about an axis through the centre of inertia.)

2. A sphere of mass m, and radius a, is set rotating

with velocity 12 about a horizontal axis. It is tlien laid gently

doiun on a horizontal plane whose coefficient ofroughness is jll,

and at the same time let go. Find the motion.

The first question is. Will it roll or slide ? Let v be the

velocity of the centre, and co the angular velocity.
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The effective force is m -- parallel to the plane. The

couple IS m v a" -r. .

The impressed forces are the friction F liorizon-tally, the
weight mg downwards, and the pressure of the plane B
upwards. Reversing the effective forces, the equations of
equilibrium become

m -— =F, mg — B = 0,

2 , do) ^m- a-' . -, = — Fa.
o at

F as it tends to prevent the motion of the point of contact
acts onwards. Hence it increases v and diminishes w. Now
V is at first zero, and &> is O, therefore v is at first less than
aco, and there is slipping. During this motion,

F= fxR = /jLing.

Hence ^. = mg, v = /j.gt,

and the distance travelled in time t is —-- .

^''° di—2-a'

«-<»-•' '^^^

2 a

When V becomes equal to aw, the problem changes.
Complete rolling begins. F is no longer equal to /z/f, but
instead, we have a geometrical equation v = aco,

1 dv dco
whence -- = «-, .

at dt

The dynamical equations are the same.
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„ . dv 2 doj
1 rom them y^ = — ^ a -j .

at D at

Hence -r and -j- are botli zero. F is also zero; and the
at at

sphere rolls on with constant velocity. The above reasoning

holds good for all circular bodies like wheels or barrels, for

the only difference would be in the moment of inertia.

That the constant velocity is never in practice attained, is

due to the imperfect rigidity of the body, and to imperfect

flatness and roughness of the plane.

It should be observed that, to determine the rolling

motion, only one dynamical equation is necessary. For

taking moments about N,

2 ^cZft)
,

dv ^m-a -J- +m-7^ ,a = 0,
o at at

an equation which results from the elimination of F from

the former two.

3. A uniform rigid circidar hoop (mass m, radius a),

cracked completely at one j^oint C, 'is rolling on a rough hori-

zontal plane. Find the breaking couple at the point A opposite

C, when the diameter through C is inclined to the horizon at

an angle a.

The angular velocity is (by the last example) constant.

Let this be w. Consider the upper part of the hoop from C
to A. Let G be its centre of inertia. Join G to the

centre of the circle. The part which we are considering is

in equilibrium under its weight at G, the action of the other

part at A, and the reversed effectives. The action at A is

composite. Let the couple be called L. The effective forces

are equivalent to a single force ^ co^ . OG from G to 0, and

a couple ^F-,J, in which k is the radius of gyration about
^ at

G (Lesson iv.. Art. 10). The couple vanishes because co is
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constant. Eeversing the force and taking moments about A,

L+
,y (J

' ((^coa a+ G sin a) — -^ cd^ . 6r . a = 0,

an equation for L.

4. A square hoard whose mass is m, and luliose length of
side is 2a, is rotating freely about one diagonal with angular*

velocity w. One end of the other diagonal is suddenly fixed.

What luill he the subsequent motion ?

It will clearly be a rotation about an axis through the

fixed point parallel to the former axis of rotation. Let the

new angular velocity be «'. As the only impressed force is

the impulse at the point which becomes fixed, the angular

momentum about that point remains unchanged. Now the

moment of inertia about a line through the centre parallel
2

to either side is m , This therefore is also the moment of
o

inertia about the diagonal. Hence m-^ (o was the quantity
o

of rotation, and was the angular momentum about any
axis parallel to the diagonal. The angular momentum has

become

m
a'
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Hence P at tlie fixed point, — mv at tlie centre, and the

couple — Qii — (ft)' — ft)), are in equilibrium

;

o

whence mv = P,

m^(ft)'-ft>) + PaV2 = 0.
o

Also since the centre moves round the end of a diao-onal,

V =a sj^ , ft)'.

Eliminatin<:j v and P we have the same result as be-

fore.
'O

5. A rough imperfectly elastic hoop is j^rojected horizon-

tally straight foriuards from a mans hand, an underhand
twist being given it so as to make it rotate about a horizontal

axis. Prove that on striking the ground it will rebound verti-

cally into the air, if the coefficient e offrictional elasticity he
1 _j_ e y

given by the equation =— ; a being the radius of the
J- — e aft)

hoop, and v, co the linear and angular velocities of pro-
jection.

Prove that if the hoop be perfectly elastic and the coefficient

of frictional elasticity be ^, the hoop tuill rebound into the
o

throiuers hand if slco = 2v.

In this problem the vertical velocity does not come under
consideration until the second part. The horizontal velocity

and the angular velocity remain constant until the ground is

touched. Then the point touching the ground gets stopped
by friction. When its velocity is zero the friction has ex-

hausted its force, but the friction of restitution begins, and
finally, when the contact with the ground ceases, the hori-

zontal velocity of the centre is known to be destroyed.

There are therefore two periods and two motions.
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At the end of the first period v is changed into an un-
known velocity F, and co into an unknown velocity I>. But
the velocity of N' is zero

;

.-. V+an = (1).

If F be the friction, the reversed effective forces iti
(
V— v)

and Dilc' (O — co) in equilibrium with this give

F+m{V-v)=0 (2),

Fu + mlJ" (fl-w) = 0.... (3).

In the second period the friction is Fe ; the velocity V is

changed to zero, and 12 to an unknown velocity a)\

The equations will therefore be

Fe + m{O-V) = (4),

Fe . a + mk" {w - n) = (5).

No. (5) is for our purpose useless; but from (1), (2), (3),

(4) we deduce

1 + e V .
J= —

, smce /J = a.
1 — e ao)

The rule for elimination in all such cases is : by means of

the geometrical relations find the value of F or other un-
known quantities ; then substitute these values and find the
final motion.

In the second part the hoop is supposed perfectly elastic

;

its centre will then rebound with the vertical velocity with
which it came down. If the horizontal velocity be exactly
reversed, it will bound back the same way as it came.
Hence equations (4) and (5) become

Fe + m{-v- V)=0 (C),

Fe. a + mk' {oy' -n) = i).

Putting e = ^, k = a, and using (1), (2), (3), (6) we have

the required result.
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6. A sphere of mass m and radius a, whose centre of in-

ertia G is distant h from its centre offigure C, is ^ilaced upon

a 'perfectly rough tabic. Find the time of an oscillation luhen

the oscillations are very small.

Here C is geometrically, G kinetically important.

Let the ande between CG and the vertical be 0. Theno

6 measures the angular velocity, 6 the angular acceleration

of the body. Let v be the velocity of C. This is horizontal.

Let it be measured in the direction corresponding to an in-

crease of 0. Let mk^ be the moment of inertia of the sphere

about a horizontal axis through G.

The impressed forces are the weight, friction, and
pressure.

To c^et the effective forces. The acceleration of G is com-

posed (1) of that relative to G, i.e. 6'^b tov^ards (7, and 6b at

right angles to CG, and (2) of that of C, i. e. v horizontally.

The effective forces are therefore reducible to

m6rh, mOb, mv at G,

and a couple mk"^ 0.

Keversed they form with the impressed forces the system

in the figure.

Now as the motion is always very small, 6 may be

nesflected.
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Taking moments about JS' to avoid F and B, we liave

inv {a — h cos 6) + mhd (h — a cos 6) + mk 6 + mr/h sin ^ = 0.

Also since there is perfect rolling,

v = a6 and v = a6.

And ultimately cos 6 = 1, sin ^ = 6.

Hence (a' + A^^^ + Z>' ~ 2a?)) 6 = - hcjO,

an equation which gives the time of a small oscillation.

7. We have seen that in cases of motion whose differen-

tial equations do not admit of complete solution, the time of

oscillation can be found when the motion is small. In the

same way when the motion does not remain small, initial

circumstances of motion can be found ; such as the values of

unknown forces, the direction of motion of a point, or the

curvature of its path at the commencement of the motion.

Such problems are not of much physical interest. They are

valuable as giving examples of successive approximation.

To find the initial value of a force is usually very simple.

A uniform rod AB, of mass m, and length 2a, rests hori-

zontally, being partly snpjyorted by a smooth peg O. On all

siij^poi't but that of O being luithdratun, find the pressure at

and approximate to the initial motion.

Let OG = r, and let 6 be the angle AB makes with the

horizon. Let B be the pressure.
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The general equations of motion are

111

m d\
dt

m d

— mg sin 6,

(1).

a^ d^Q

On eliminating i^, an equation presents itself whicli is

once integrable and leads to

©-©(--^•)=%"=-«-

But no otlier equation involving velocities only can be got,

and therefore H cannot in the general case be found since it

depends on

dr , de

Putting for 6,But the initial value of B can be found

-T- , -J" zero, and for r its initial value r^,, we have initially

dt
= 0,

d^
df

a^d'e

'inr,-^^=mg-R,
f

^s-di^-^''^

(2):

from which

^-^^^ --^ df
%n

a'^ + 3r,

It is probably needless to remark that equations (2) are

not differential equations, and cannot be integrated.
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Let us now endeavour to find tlie initial radius of curva-

ture of the path of G. This involves a closer approximation

to the initial motion than Avas necessary in finding R.

Quantities which were neglected in that operation must not

be neglected.

G^ begins to move downwards. Hence the normal is

horizontal. If ON, GN are x and ?/, tlie radius of curva-
2 f\

ture is initially — . As this assumes the form - it must be

evaluated. Differentiatinoj numerator and denominator and

dx , dy
putting X, y, -y, and -r- zero,

^^'
d£

de

Now either by differentiating

x = r cos 6, y =^r sin Q,

or from the properties of relative accelerations,

d^y {d\ (de\-\ . ^ 1 d f ,de\ .
^^" = \,„-r{-r] h sin ^ + - T I' 7

cos 6,
df \df \dtJ )

rdt\ dt)

whence df^"^'^'

In differentiating to find
-J^^'

, we may in the last differ-

ntiation neglect all vanishing terms, and in the next last

11 squares and products of vanishing terms,
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d'x .(d'r _ d9 d'd\

df = '''^[W-^'dfdl^)

d'e .de . .( d'i

dt' dt \ dtV

dt'
"

dt' '\dfj '

^''\df

Now
df d' + 3r/

'

and differentiating the equation

a r

~dt

zr —,—TV = Q cos o* -77
df dt dt' ^ di

:. p

d\
at
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If, however, as in the above problem, the system starts

from rest, the value of p assumes the form -, and when the

direction of the normal is not known the evaluation is tedious.

PROBLEMS FOR SOLUTION.

1. A uniform rod AB is whirled away on the surface of

smooth ice. Prove that the longitudinal stress at a given

point P is constant throughout the motion, and proportional

to AP.FB.

2. A uniform rod has a ring at one end, by which it

slides on a smooth straight horizontal wire. If it starts from

rest in any position in the vertical plane with the wire,

find the motion and the supporting pressure of the wire, and

prove that the other end of the rod moves in an ellipse.

3. A wheel in the form of a cylinder of radius B and

thickness A has an axle of radius r and length a cut out of

the same piece, the axes and centre^s of gravity being coinci-

dent. The whole is suspended with the axis horizontal by

three vertical strings, one of which is coiled round the wdieel

and the other two round the axle at equal distances on either

side of the wheel
;
prove that if the first string be drawn up

or let down in any way the tensions of the other two will not

be altered provided

a _ R' (B - 27-)

A 7'(2B-r)'^

4. A cylinder unrolls itself from a vertical string, the

other end of which is fixed. Prove that the motion is uni-

formly accelerated.

5. A cube is rotating with angular velocity co about a

diao-onal, when one of its edges which does not meet that

diagonal suddenly becomes fixed ; shew that the angular

velocity about this edge as axis will be —
-, , .



PROBLEMS FOR SOLUTION. 115

6. The ends of a rod of length 2a are constrained to

move on the smooth arc of a vertical circle of radius c. If

the rod be displaced from its position of unstable equi-

librium, find the breaking couple at any pomt in any

position.

7. A uniform rigid bar, suspended at one end by a

thread, rests on a perfectly smooth horizontal plane at a

given angle with it ; if the thread be cut, shew that the con-

tact with the plane will be unbroken during the motion.

8. A circular ring hangs in a vertical plane on two pegs.

If one be removed, prove that, P^, P^ being the instantaneous

pressures on the other peg calculated on tlie supposition that

the ring is (1) smooth, (2) rough,

tan'^ a
P' : P: :: 1 : H-

where a is the angle which the line drawn from the centre to

the peg makes with the vertical.

9. A uniform inelastic rod falls without rotation inclined

at any angle to the horizon, and hits a smooth fixed peg at a

distance from its upper end equal to one-third of its length.

Prove that the lower end begins to descend vertically.

10. A rod of length 2a has a ring at one end which

slides upon a smooth fixed horizontal rod. The former being

initially vertical, an angular velocity « is impressed upon it

about the ring in the vertical plane containing the fixed rod
;

prove that the greatest angle it will make with the vertical is

_j / ao)'

' V 1^/
2 sin"

- v^

11. A uniform inelastic rod, inclined at an angle with

the vertical, falls without rotation and strikes a smooth hard

horizontal plane. Shew that its centre of gravity imme-

diately moves with a velocity

V.
1 -i- 3 sm'

V being its previous velocity.
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12. An inelastic ball of given radius is dropped from the

window of a carriage travelling uniformly along a level road

upon the wheel, which it hits at the highest point ; deter-

mine the subsequent motion of the ball relatively to the car-

riage, the rim of the wheel being perfectly rough.

13. The end of a uniform rod of weight W can slide by

a smooth riug on a vertical rod ; the other end sliding on a

smooth horizontal plane. The rod descends from a position

inclined (3 to the horizon. Shew that the rod does not leave

the plane during the descent, and that its minimum pressure

., . W , ^on it IS -i-cos p.
4

14. A triangular lamina ABC is suspended horizontally

by vertical strings attached to its angular points. If the

strings at B and G be simultaneously cut, shew that there

will be no instantaneous change of tension in the string at

A, provided AD=GD . cos ADC, D being the middle point

of BC.

15. An imperfectly elastic sphere descending vertically

comes in contact with a fixed rough point, the impact taking

place at a point angularly distant a from the lowest point,

and the coefficient of elasticity being e. Shew that it will

commence moving off horizontally after the impact if

. 2
^^

tan a = —
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PROBLEMS.

A system of rigid bodies.

1. In these problems tlie expressions for the effective

forces are written down for each body of the system sepa-

rately. The equations of motion are always easily written

down in whatever co-ordinates the changes of velocity are

expressed. But their solution and the geometrical equa-

tions are much simplified by a judicious choice of variables.

As a general rule it is best to take co-ordinates which

are all independent of one another. We get by this means

the least possible number of variables, and so avoid having

to differentiate geometrical equations.

Suppose for example that two spheres, A and B, were

placed A above B on a plane and were disturbed, and that

it was required to find the motion so long as they were in

contact. We might take the co-ordinates of the centre of B
as x^, ?/j, those of A as x^, ?/,, and denote their angles of

rotation by other symbols. But it is clear that x^, y^ are

not independent of x^, y^, but connected by the relation that

the distance between the centres is constant. Hence it would

be better to denote the co-ordinates of ^'s centre relatively

to i5's by r, 6. Then r is constant and no other geome-

trical equation is needed. The properties of relative accele-

rations enable us to express at once the absolute acceleration

of A's centre in any direction.

It is not necessary nor even expedient, in drawing the

necessary diagrams and finding the effective forces, to con-
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sider in what direction velocities actually are or actually
increase. Measure them in the positive direction of the
co-ordinates, and the result will shew by its sign in which
direction they are, and in which they increase.

Forces of connection which are independent of one an-
other and also of the position of the system (as rolling

frictions and normal pressures, but not sliding frictions nor
tensions of elastic strings), may be avoided when the motion
only is required by grouping the various systems, so as to

make these forces internal, and by resolving and taking
moments in suitable ways. The equation arrived at by con-
sidering a whole system, is just the equation which would
have been arrived at, had each body been separately con-
sidered and the mutual actions eliminated.

2. A bullet of onass m, moving with velocity V, strikes

perpendicularly at the centre a uniform rectangular door of
mass ^I and breadth 2a. If the bullet sticks, find the angular
velocity of the door.

Let this be a, and let the measure of the blow on the
door be P. Then the blow suffered by the bullet is — P.

Consider (1) the bullet. This has its velocity changed
from V to aco. The force necessary to do this is m (aco — Y).

This reversed is in equilibrium with — P;

.*. P -f m (ao) ^ V) = 0.

Consider (2) the door.

The moment of P round the line of hinofes orencratcs a

4-a^
quantity of angular momentum J/— cd. Hence the couples

Fa and — M ~ w are in equilibrium
;o
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Eliminating P, we have

3m (ao) - F) + AaMco = ;

SmV
,'. ft) =

,{3m + 4:M)'

For example, m = 1 ounce, 31 = 200 lbs., 2a = 3 feet,

F= 500 feet per second,

1500 1000 „^o 1

" = |(3TiT20l)7l6)=12803 =
-'''«'^^^'^'^'-

As tlie unit of angular velocity is, when the unit of

circular measure is described in one second, the door de-

scribes

•078ofo7\2^,

or about 4J*^ per second.

(a) Solve the problem by the principle that the whole

angular momentum about the line of hinges is not changed

by the impact.

(^) Find the resultant impulsive pressure on the line of

hinges^ by taking moments for the door about the centre,

and then substituting the value of co.

[

,

mMV \
Answer -z r-TTr) •

V dm + 4:MJ

(7) Find this pressure by considering the two together,

and resolving at right angles to the plane of the door.

3. A uniform cylinder of mass M and radius a, has a

hollow of any form in it filled with fluid of the same density

and of mass m. The cylinder being allowed to roll down a

perfectly rough plane inclined at an angle a. to the horizon

with its axis horizontal, find the motian.

Here the fluid is supposed not to rotate. As far as trans-

lation is concerned the whole is one, but the moment of

inertia must be calculated for the solid part alone.
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Take a section of the cylinder at right angles to its axis.

Let G be the centre, which is also the common centre of

inertia of the solid and fluid. Let v be the velocity of C,

and ty the angular velocity of the cylinder. Then v = a(D and

dv _ day

The effective forces of translation are reducible to one,

acting at C parallel to the incline. The couple is due to the
"motion of the solid part alone, and is therefore equivalent to

MK^ ~j, , MK" being the moment of inertia about the centre

of inertia of the solid.

To calculate this, call this point G\ and suppose the whole
cylinder solid. Its moment of inertia round C would be

- (ilf+ m) a\ But this is made up of il/ii" round G, and of

the moment of inertia of the part which in our problem is

replaced by fluid. Let its centre of gravity be 6r', and its

moment of inertia about it ml^. Then

Suppose MK^ found from this equation.

The impressed forces are the weight (il/+ m)g at C, and
the friction and pressure at the point of contact.

Eevcrsing the effectives and taking moments about this

point

;

(il/ + m) a
^J

+ MK'' -^^
- (J/+ 7^0 ga . sin a = 0.

Since -u = ci , . the motion is uniformly accelerated.
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(a) Prove that the cyKnder will roll down faster than if

it had been solid.

(/3) Calculate 3IK^, supposing the hollow a concentric

cylinder of radius h.

Ans. M."^.

(7) Prove that the friction acts up the plane and is

constant.

T . /TT- \ f • civ
It is {M+ m) igsma—'-T:

(S) Prove that the normal pressure is constant. Sup-

posing the liquid to be in an excentric cavity, would it tend

to cause the cylinder to jump off the plane ?

Would it have this tendency if it were of different density

from the solid ?

4. A smooth circular tube (mass M) has a particle (mass

m) inside of it, and is set in motion in any manner luith every

point touching a smooth inclined j^lane. Prove that the parti-

cle will move with constant velocity round the centre of the

tube, and that if co be this angidar velocity and a the radius

of the tube, the pressure of the j^article on the tube is constant

and equal to

MnW
M + m'

The impressed forces on the tube are its own weight and

the normal pressure of the particle. These have no moment
round the centre, and therefore the angular velocity of the

tube remains constant. Let co be the angular velocity of

the particle round the centre of (not relatively to) the tube.

Let ii, V be the accelerations of the centre in and at right

angles to the direction of the particle at any moment. Also

let \g, fig be the component accelerations in these directions

of the force of gravity on a unit mass.
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Then tlie accelerations of the particle are

ii — a(xP' and v + aw.

Let R be the normal pressure, inwards on the particle,

outwards on the tube. Then the tube would be in equi-

librium under
M\g, R and Mit reversed,

and ^^f^!J> ^.nd 21v

Tlie particle would be in equilibrium under

m\g,—R and m(u — aM^) reversed,

and 'mf^g, and 7n{v -{- aco)

Resolving p^g ^ y = 0,

fjig — V — a^ = ;

whence w = 0, or tlie particle moves round the tube with
constant velocity.

Kesolving again, MXg + R — 31 ii = 0,

and tnXg — R — m (d — aco') = 0.

Whence, R(-y.+ —] = aa)^
\l\i mj

(a) Supposing 12 the angular velocity of the tube, what
will be the time in which the particle will come round to the

same point of the tube again ?

(/5) Shew from first principles that gravity has no effect

in altering the relative motion of the tube and particle, or

the mutual pressure.

(7) In wliat path does the common centre of inertia

move ?

(S) About what point is the whole angular momentum
constant ?

(e) Prove by moans of this principle that the angular

velocity of the particle is constant, assuming that the angular

velocity of the tube is constant.
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5. Tiuo uniform rods AB, BC, of masses m, m', and

lengths 2a, 2a', are connected by a joint at B, and are lying

in a straight line. A blow P is struck at C, in a dwection

perpendictdar to ABC. With what velocities will the system

begin to move ?

The immediate effect of P upon BG will be to make its

centre move off in a direction parallel to that of P, and to

make it rotate. Hence the point JS must begin to move at

right angles to BC. Hence the action at B between the rods

will at first be in this direction, and in general there will be

no motion nor force at first along ABC.

Let V, V be the velocities with which the centres of

inertia of AB, BC move off. Let w, «' be the initial angular

velocities measured in any but the same direction. The im-

pressed forces are P and the action at B. This latter we will

avoid. The effective forces are mv and mv at the centres
2 'a

of inertia, and couples m%Wy m' -r-co' on AB, PC respec-

tively. Eeversing these, as in the figure, and resolving for

the whole system

:

7nv -\- m'v — P = (1).

yi j3

Takinsf moments for AB round P,

mv . a — m CO = (2).

Taking^ moments for BC round P,

P. 2a - m'v'. a — m' — w' = (3).
o
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Also, since B is common to AB and BC,

V — dw — v-V aw (4).

These are four simple equations to determine the un-
known quantities v, v\ co, co\

These are probably the most convenient equations. There
are many others equivalent to the above, which might have
been chosen. Thus, taking moments for the whole about 0,

2 '2

7n~co — mv [Za + a) + m --- o) — m v a = 0.
O it

Supposing the action of BC on AC to be a force X at

right angles to AB ; we have, on resolving for xii? at right

angles to AB,
X—mv = 0.

Considering BC, and resolving,

P-X-m'v' = 0,

which two are equivalent to (1).

Taking moments for AB about its centre of inertia,

A. — m &j = I),

o
and so on.

(ot) Justify, by writing down equations of motion, the
assumption that there is no force nor motion along ABC.

(/3) Prove that AB begins to turn about a point onc-
tliird of its length from A.

(7) Solve this problem by the statical method of virtual

velocities. (See Art. 7.)

6. A little squirrel clinr/s to a thin rough hoop, the plane

of which is vertical, and whicJi is rolling along a perfecthj

rough horizontal plane. The squirrel makes a point of keep-

ing at a constant height above the p)lane, and selects his place
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on the hoop so as to travel from a position of instantaneous

rest the greatest possible distance in a given time. Prove that,

m heing the mass of the squirrel and M that of the hoojy, the

inclination of the squirreVs distance from the centre of the

hoop to the vertical is equal to

m
cos m + ^M'

Here the impressed forces are the weights, the friction,

and the pressure of the ground. There are also the forces by
which the squirrel clings to the hoop ; but we will take both

as one system, and so these will be internal.

The linear accelerations of the squirrel and hoop are the

same. Let this be v. If the angular acceleration of the

hoop be w, the effective forces are

m'v at >S^, Mi) at (7,

and a couple Ma^w,

[a being the radius of the hoop).

Reversing these, and taking moments for the Avliole

system about N,

mg a sin C — onb (a — a cos C) — Mv a — Ma^co = 0.

Also, since there is perfect rolling,

V = ad)
I

.*. V [m (1 - cos G) -f 2ilf } = mj sin C,
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Hence the acceleration is constant wbile . the squirrel

keeps to the same place. And therefore the greatest possible

distance Avill correspond to the greatest possible acceleration.

Now V is to be made a maximum by the variation of C.

Hence, differentiating

sin G
'IM -\-m — m cos C

with respect to C, and equating the result to zero, we have

cos C = - „,^.

We will write down some equations of motion by which
the problem might have been solved. Suppose F and li

the friction and pressure at N. Let T and Q be the tan-

gential and normal forces of the hoop on the squirrel, and
reversed of the squirrel on the hoop.

Considering the squirrel, we have, by resolving along the

radius CS and perpendicular to it,

mcf cos C — Q — mh sin C = 0,

— mg sin C + T— mv cos (7=0.

Consider the hoop. Resolving horizontally and vertically,

and taking moments about C,

F-v QsinC- Tcos C - Mv = 0,

Jl-Mg- QcosC-TsmC=(),

Fa — Ta + ^hrio = 0.

It is evident that on eliminating jP from the last and first

of this last set we shall have the equation of moments for

the hoop alone about iV^; and that on eliminating F, Q, T ^\c

shall have the single equation in the former solution.

It is also clear that F, 7?, T and Q can be found in terms

of the accelerations from the above equations. ^
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In general, by writing down the equations of motion for

each body and the connecting equations, we obtain sutficient

equations to determine the motion and the forces of con-

nection.

7. A rectangle isformed offour uniform rods of lengths

2a and 2b, tuhich are connected by hinges at their ends. The

rectangle is revolving about its centre on a smooth horizontal

plane with an angular velocity n, when a jjoint in one of the

sides of length 2a suddenly becomes fixed. Sheiv that the

angidar velocity of the side of length 2b becomes immediately

3a +b
. n.

Oa-i- 4b

It was mentioned that any convenient statical method
might be applied to the solution of problems on motion.

We shall for this problem use the method of virtual velocities.

The virtual moment of a force is the force multiplied by the

displacement in its direction of the point of application.

The virtual moment of a couple is the sum of the virtual

moments of the two parallel forces which compose it. This

is easily seen to be the product of the measure of the

couple and the angular displacement of the body on which

it acts.

The rectangle has been revolving about the centre with

velocity n; hence the middle points of the rods have been

moving with velocities bn, an, and the rods have been
rotating about their centres with angular velocity n. The
point becomes fixed. Opposite sides, as ^5 and CD, will

still remain parallel; and, since they must make equal angles

with any direction, their angular velocities must be equal.

Let them be w. Let the angular velocity oi BG and A I) he

co\ Then the velocities may be all expressed in terms of ay

and ft)'. For let M, N, M' , N' be the middle points of the

sides, and let OM be called p. Then the velocity of B is

{a-\-p) ft). That of N is the same as that of B in the airec-

tion of jBJV, and is bwi' in the perpendicular direction. And
so on, as represented.
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Now subtracting from these the previous velocities, we
have the chang-es in the velocities. These will be

:

for AB,

for BC,

for CD,

for DA,

29CO, — hi, 0) — n;

{a +2^) <« — «?^) ^<^'j <^' ~ '^
)

2JW, 2h(o' — hi, (o — n;

{a — jj) CO — an, hco' , w — n.

If we multiply the changes in the linear velocities by

the masses, which are proportional to 2a, 26, and the changes
2 7 2

in the angular velocities by 2a. -^, 26. -^, and reverse them,

we shall have a system in equilibrium with the one im-

pressed force, the impulse at 0.

These reversed forces will then be (as to magnitude)

:

on AB,

2ap(D, 2a6?i, at M and a couple, 2a • v- (<^ ~ ^0 5

on BG,

2 (a +p) 6a) - 2a6«, 26V; atN and a couple, 26 .-
. (w - n)

;
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on CD,

'lapco, 4<ahco' — labn, at M' and a couple, 2a .^ . (w — n)
;

on DA,

2 (a —J?) 5&) - ^dbn, ^Wa)\ at ^^' and a couple, 2& .
- (w' - n)

;

and will act in the directions indicated.

C

Now the problem proposed is to find o)'. Let us suppose

a small angular displacement W given to the system in its

own plane, keeping AB fixed. The angular displacement of

DC will be zero. The displacements of N and B' will be
hW^ and that of M' will be 268^. The virtual moments of the

couples on AB and i) (7 vanish.

The virtual moment of the forces at J/ also vanish, and
that of the forces parallel to CB. And the equation of virtual

moments becomes

2&V . UQ + (4aZ^a)' - lain) 2hSe + 2Z/V . hSd

Ah^ AW

e7 O

whence

or

or

co' {Sh + 12a) = n {6a + 2^»),

CO = n . r.

Sa + h

6a + 4<b
'

P. G.
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(a) What displacement must be given to obtain an

equation involving only co ?

(/3) Write down the equation obtained by keeping the

point and a point on DC opposite to fixed, and giving

an angular displacement about these.

(ry) Prove by giving the whole a displacement parallel

to AB, that the component of the impulse at along AB is

4h (a + h) co\

8. A pendulum consists of a uniform rod AB, of mass

m and length 2a, attached hy a string of length \ at A. to

a fixed 2^oint O. It makes small oscillations in one plane.

Find their law.

Let G be the centre of inertia of AB ; and denote by 6

and ^ the angles which OA and AB make with the vertical.

The accelerations of yl are

Z{|; along ^0,

fPfi

and I -^^ perpendicular to OA ;
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therefore the accelerations of G are those in these directions,

together with the accelerations relatively to A, which are

ct[-j,] along GA, and ci^^ perpendicular to AB.

The angular acceleration is -^^2 .

The impressed forces are the weight mg at G, and the

tension of OA. The reversed effective forces will act as in

the figure. We can get two equations without the unknown
tension.

1st. Take moments about A,

m 'li-i-i) .a.sin {(p — 6) +ml^a cos (0 - 6)

+ ma -j'^ . a + mk -^ + mga sm ^ = 0.

2nd. Resolve perpendicular to OA,

+ ma -ji- . cos (^ - 6") + mg sin (9=0.

We can solve these equations if we assume that the

oscillations are small, so that the velocities vanish while the

accelerations do not. Making -^ , -^ zero; and putting for

cos ^, cos 6 the value 1, for sin ^, sin 6 the values <j6, 6,

A solution of these is clearly (Lesson XV.)

6=Asin{nt + B\

(j) = A' sin (nt + B).

9-2
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To find n we have

- aht'A - (a' + F) n'A' = - agA']

— In^A - an^A' = -gA ]
'

Whence a'h' = [ag - {a' + Jc') n'] [g - hv) .

If the roots of this be n^ and n^, and the vahies of the
A'

ratio -J corresponding to tliese be fx^ and yu,,, the solution

will be

e = A^ sin (ii^t + B^) + A^ sin {nj^ + B^),

</) = fi^A^ sin (nj) + ^J + fM^A^ sin (??./ + ^J.

B^, B^ are to be determined by the circumstances of the

motion.

These equations indicate a double oscillation. The two
parts are independent and co-existent.

(a) Obtain these differential equations by taking .r, y as

the vertical and horizontal co-ordinates of G^ and ic, y as

its accelerations, and then differentiating the geometrical

equations.

(yS) Obtain them by the method of virtual velocities.

9. A cylinder of mass M and radius a can rotate about

its aocis which is horizontal and fixed. A rough sphere of
mass m and radius b is j^laced on its top and disturbed from
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its position of unstable equilibrium. Find in what position

it will leave the cylinder.

Let 6 be the angle the line of centres makes with the

vertical. Let w and H denote the angular velocities of the

sphere and cylinder respectively. The accelerations of C are

{a^h)e\ and {a + b)0,

along and perpendicular to CO respectively. The angular

accelerations will be co and H respectively. Thus the effec-

tive forces reversed will form a system as in the figure.

The impressed forces are the weights at G and 0, the

pressure of the axle at 0, and the mutual friction and normal

pressure (R) at if. We will avoid the action at and the

friction. The pressure B is necessary ; for the instant when
it vanishes is the instant of separation.

Considering the sphere and resolving along 00,

m {a + b) &' + R -mrj cos = (1) ;

taking moments about N,

2
m{a-{-b) 6b + m -Ifco- mgb sin ^ = (2).

o

Considering both the sphere and cylinder, and taking

moments about 0,

m {a + If + m ~h'oy+M^ il-mg [a + h) sin ^ = 0....(:3).
o 2

We have also a geometrical equation since there is no

sliding and the points of the two bodies at N are moving

together

;

(a-\-b)e-hco=^aQ. (4).

From the last three equatious 6 has to be found, and R
may then be found by the first. Differentiating (4), and sub-

stituting for O in (3), we have

^'{m(a4-5r + ^(a + Z>)}+e;)j|m2.^-^} = m^(a+^')sin^;
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eliminating co between this and (2),

{a + I) (7J/+ 4.m) = r/ sin 6/ (4??2, + 5JJ),

whence multiplying by 20 and integrating,

6' {a + h) (7if + 4m) = 0- 2^ cos 6^ (5i/+ 4»0.

Now at the beginning of the motion 6 was zero, and cos 6

was 1

;

.-. C=--2fj{5M+4m),

' _ 2g (1 - cos 6) 5il/+ 4m

Substituting this in (1) and making R zero, the equation

which gives 6 when the bodies separate is

27 (1 — cos 6') ^^-^TT—;r- = 7 cos 6,

. 10i¥+ 8m
whence cos U = -^ , ^ , ., ^ .

l/i]i + 12m

(a) Calling i^ the friction at N, acting at right angles

to OG, but upwards on the sphere and downwards on the

cylinder; prove that

F— mg 'An 6 \- m . {a -{• I) = 0,

F=-^h(o.

(/S) What forces would be introduced if we resolved for

the whole system at right angles to 00?

(7) What forces would be introduced if we resolved for

the cylinder along ON 'I

10. A string luithout rueight is coiled round a rough

horizontal solid cylinder, of whicli the mass is M and radius

a, and which is capable of turning about its axis. To the

free end of the string is attached a chain of mass xn and
length 1/ ifthe chain hegathered vp close and then let go, p)rove
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that, if 6 he the angle through which the cylinder has turned

after a time t, before the chain is fullg stretched,

This problem illustrates the fact that an infinite number

of infinitely small blows has the effect of a continuous force.

The uncoiled part of the chain and the cylinder are moving

with finite acceleration, and the coil is falling like a free

heavy body. But at every instant a link passes from the

coil to the straight part, and so has its velocity instantane-

ously changed by a finite amount. There is therefore an

impulsive tension on the uncoiled part as often as a link

is added to it. This impulsive tension is the opposite of

that which changes the motion of the link, and if the whole

be taken as one system it will be internal and disappear.

The whole increase of angular momentum about the

axis of the cylinder is caused by the weight mg.

But the rate of change of angular momentum is the

measure of the rotational effect of a force. 'J'he statement of

this is what is meant by taking moments about a certain

axis. Hence the rate of increase of angular momentum
about the axis is mga.

The rate of increase- of the angular momentum of the

cylinder is

Mrf ere

2 • di''

Let z be the length of the uncoiled part of the chain at

rJO

any time. Then its velocity is « ^, and the rate of increase

of the moment of its momentum about the axis is

d hnz ^dO

dt\T^lt

for s is variable as well as 6,
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1-2
The coil moves with velocity gt, and its mass is m —j—

Hence the rate of chans^e of its moment of momentum is

The sum of all these is mga,

o

d^f l-Z

dt

Ma" d'd ma d ( de\ m d ri n

Integrating once

dO Ma ma dO m ,j . mn .t ,^.

di-T+T'dt+i'^-'^^'-ir w-

Now since the coil is moving with velocity gt, and the

straight part with velocity a -j, , the rate of uncoiling, —, is

dO 1
equal to gt — a~^^, and therefore z= -gf — a6, since z, 6 and

t all bes^in from zero tosfether.

1 , ^ dO dz

d^Mal^^^ dz

dt m ^"^
' dt'

Til,

Integrating MaQ = -j . z"^.

i

(of) Shew that the impulsive tension caused by the un-

coiling of a link ^z is —^ [gt — a -,- )

.

(/3) Shew that the finite tension due to the weight of

the strai<]rht part is ,^, £ ~.
^ ^ M + 2mz

(7) Compare these.
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PROBLEMS.

1. Two infinitely rough wheels revolving uniformly in

the same plane are suddenly brought into contact and their

axes are kept fixed ; determine what changes are made in

the angular velocities.

2. Two particles of any elasticities and of masses m and

m', joined by an elastic string, are placed in a vertical line;

the string is stretched and they are simultaneously let go.

Prove that whenever m comes to rest, m is moving with a

velocity gt ,—

.

3. A string has two particles m and m' attached to its

ends. The mass m lies on a smooth horizontal table, and m
is held so that the string is horizontal with a length a beyond

the edge of the table. If m be let drop, prove that the initial

l-\ ;

4. A little animal, the mass of which is m, is resting on

the middle point of a thin uniform bar, the mass of which is

on and the length 2a, the ends of the bar being attached by
small rings to two smooth fixed rods at right angles to each

other in a horizontal plane. Supposing the animal to start off

along the bar with a relative velocity V, prove that, 6 being

the inclination of the bar to either rod, the angular velocity

initially impressed upon the bar will be

3m Fsin2^

3m 4- 4m' ' a

5. A thin hollow smooth ring (mass M and radius a), of

which the plane is vertical, and which contains a bead of

mass m, is placed upon a smooth horizontal plane. Prove

that the bead, having been placed near the lowest point of the

ring, will oscillate synchronously with a pendulum, the length

, , . , . 3Ia
01 which IS m + M'
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G. Two equal heavy spheres, one solid, tlie other hollow,

and the hollow filled with fluid, are rotating with the same
angular velocity about a horizontal axis, and are laid side by
side on a rough horizontal plane, the coefficient of friction for

both being fju ; if the interior radius of the sphere be one-half

of the exterior, and the density of the fluid be equal to that

of the solid, find the distance between them at any time,

supposing that they move in parallel lines. {Iiesult. Let H
be the initial angular velocity, a the radius of each. Then

the distance which the solid sphere has covered is -^-

before perfect rolling begins, and f^OK\^~i)] ^fterw^ards,

where t = S . - . The same results hold for the other, only

_m an
'^-

'61 >^-^

7. A cylinder rolls down the rough upper face of a

wedge which is capable of moving on a smooth horizontal

table
;
prove that the accelerations are uniform.

8. An iceberg floats without change of volume from

latitude \ to latitude X^. Shew that the angular velocity of

the earth is diminished (very nearly) by the fraction

- -.
^ (cos \ — COS XJ

of itself, m and il/ being the masses, and the earth supposed

spherical and homogeneous.

9. A heavy circular disk is rotating in a horizontal

plane about its centre, which is fixed. An inject walks from

the centre with constant velocity along a certain radius, and
then flies away. Determine the whole motion.

10. A loaded cannon is suspended from a fixed horizontal

axis, and rests with its axis horizontal and perpendicular to

the fixed axis, the supporting ropes being equally inclined to

the vertical ; if ^; be the initial velocity of the ball, whose
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mass is -tli of the mass of the cannon, and h the distance
n

between the axis of the cannon and the axis of support,

shew that when it is fired off, the tension of each rope is im-
mediately changed in the ratio

v^ + T^gh : % (71 + 1) gh.

(The moment of inertia of the cannon about its centre is

neglected.) If a cannon be supported in a gun-boat in the
manner described, what would be the effect of firinsr it off ?

11. A rod whose centre is fixed is rotating uniformly in

a vertical plane. A perfectly elastic ball of equal mass is

dropped from a height equal to one-fourth of the circum-
ference of the circle described by the end of the rod, and
strikes it when horizontal at one extremity. After eight
revolutions of the rod the ball again strikes it

;
prove that

the rod was horizontal when the ball was dropped.

12. An imperfectly elastic ball is let fall upon a smooth
hoop, of which the mass is equal to that of the ball, and
which is suspended from a point in its circumference about
which it is capable of moving freely in a vertical plane

;
prove

that, if e be the modulus of elasticity, and a the inclination

to the vertical of the radius passing through the point at

which the ball must strike the hoop in order that it may re-

2e
bound horizontally, tan^ a = — .

o

13. A square formed of equal and similar uniform rods,

jointed freely at the ends, is revolving with constant velocity

about its middle point. Shew that if one of the angular
points suddenly becomes fixed while the four joints remain
free, the angular velocity of each rod will be at once di-

minished in the ratio 5:2.

14. Four equal uniform rods, jointed at their ends, when
falling freely as a square with one diagonal vertical, are

caught by means of a light hook at the middle jDoint of one
of the lower rods. Prove that that rod will be brought to

rest by the impact, and will remain at rest during the rest of

the motion.
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15. ABCD is a uniform heavy chain whose length

equals ol, which is fastened to a peg at A, hangs down to a

distance I, and passes over a smooth peg at C, which is very
near A. If the chain be slightly disturbed so that its end D
descends, prove that the impulsive pressures at A and C at

the moment when it has run entirely down are m . \/2lg and

2m ^Itlg, m being the mass of the chain.

16. A mass M attached to the end ^ of a chain AC, is

placed (with the chain) on a horizontal plane in such wise
that a portion AB of the chain forms a straight line, the re-

maining portion BG being heaped up at jB : the mass M is

then set in motion in the direction B to A with a given
velocity, and so moves in a straight line, dragging the chain;

determine the motion.

17. Two uniform rods OA, AB, of lengths 2a, 2h, and of

masses proportional to their lengths, are jointed together at

A, and are rotating round the fixed hinge in the same
straight line, and with equal angular velocities, when the

outer AB comes against a fixed obstacle P. If the position of

this be such as to reduce both rods to rest, prove that

Sa + 2h

2a~ + bab + So"

18. Three equal particles, each repelling with a force

varying as the distance, are at rest at the corners of an equi-

lateral triangle, being connected by three fine inextensible

strings, which form the sides. If one of the strings be cut,

shew that the tension of each of the other two is instan-

taneously increased by one-fifth of its previous amount.

19. CP, AP are two equal uniform heavy beams, con-

nected by a free hinge at P. The beam CP turns freely in a

vertical plane about a fixed horizontal axis through C, while

A slides freely on a vertical groove of which C is the liighest

point; prove that if the system make small oscillations

about its position of equilibrium, the length of the simple

CP
isochronous pendulum is -

.

o
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20. A uniform string hangs at rest over a smooth peg.

Half the string on one side is cut off. Shew that the pressure

on the peg is instantaneously reduced by one-third.

21. A smooth sphere 11 is on a horizontal plane, and
another sphere m resting on it is just disturbed from its

position of unstable equilibrium. The spheres being sup-

posed homogeneous, shew that, whatever their radii or

weights, the upper sphere will leave the lower before the
2

line of centres is cos~^ ~ from the vertical.
o
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ENERGY.

1. We have now to consider a method into -which the

element of 'time' does not directly enter ; in which force is

considered not as generating a certain acceleration, but as

pulling through a certain space; in which position and
velocity are therefore the language, but never time nor ac-

celeration.

The question which of these two was the proper ex-

pression of the effect of force caused a controversy very

memorable in the annals of mathematics. We can now see

that both sides were right. All our methods hitherto have

been based on the former. We now turn to the latter.

2. When a force P drags its point of application through

a small space, of which Sp is the measure in the direction of

the force, it is said to have done work FSj). And if the

point has been forced back Sj) against P, work PSj} has been

done against the force. Thus in this system the effect of

a force is work, in the other it was momentum.

The Avork of a couple L, which moves a body through

an angle B6, is LhO,

The accumulated work of a force P is clearly jPdp, the

limits being the values of j3 in the extreme positions. Thus

the work done by gravity on a stone of mass 7n, moving from

a height h^ to a height //^, is mg (h^ — /^J ; and this is the

same by whatever path, constrauicd or free, the stone has

reached the lower level.

The work done by a radial force P, in pulling a body

from a distance r^ from the centre of force to a distance r^, is

Bdr.
I
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And in general tlie work done by any force, wliose com-

ponents are X, Y, Z, in bringing its point of application

from x^, y^, z^ to a?^, y^, ^o, is

^{XqIx-^ Ydy^-Zdz),

the limits being given by these points. For if P be the

force of which X, Y, Z are components, and if QQ' be an

element of the arc {hs) traversed by the point of application,

I^_ Q

F,hp = P. QN'= P cos NQQ\ QQ\

But the sum of the components of any forces in any

direction is equal to the component of their resultant in

that direction ; therefore

whence, in the limit,

Pdp = Xdx + Ydy + Zdz.

To measure work we must have some constant and easily

accessible force. Take the force of gravity acting on a pound

of matter at a given locality. Then tbe work expended in

raising this pound to the height of one foot will be the

unit of work. And any quantity of work will be measured

by the number of feet to which it would suffice to raise the

pound.

8. The work done by an impulse I, which causes the

velocity of its point of application to change from u to u, is

For suppose I the limit of a very great constant finite

force P, acting during a very short time r. Let a be the

acceleration of the point of action of P resolved in its own

direction. The space described by a point moving with
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finite acceleration a is „— , where v-u is tlie increase of
2a

velocity.

This holds good also in the heginning of every accelerated

motion whatever be its law.

Hence the work done, P^p,

_ u"-u'~
2a •

But II -u = a.T;

u' + u
therefore work done =Ft . .

And when t is infinitely small,

I=Pt,
whence the formula.

A very general proof of this is to be found in the 808th

section of the first volume of Thomson and Tait's Natural

Philosophy.

From this we see that if a ball strikes perpendicularly

a fixed hard surface and rebounds with equal velocity there

is no work done.

4. When a body or system possesses the power of doing

work it is said to have energy. Thus a moving cannon-ball

could force back a resisting body through a certain space

before exhausting its own motion ; this energy is called

kinetic. Or the Avater in a mill-dam could do work before

falling to a lower level ; it has energy which is called poten-

tial, and which is due to a position of advantage relatively

to a force. A mass of gunpowder has in it a store of the

energy of chemical affinity. Steam in the boiler of an engine

has the energy of heat ; a man not utterly prostrate possesses

a certain amount of another form of energy ; and so on.

It is not often that the whole of any form of energy

possessed by a body can be made avaiLable for work. A
stone at the top of a tower has energy due to its height

above the bottom. At the bottom its available poten-
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tial energy is exhausted, but it is clear that if there ^yere

a pit at hand the stone could do additional work before

getting to the bottom of that. Its total energy due to the

attraction of the earth would never be exhausted till it

had reached the centre.

The amount which cannot be made available was called

by Clausius the Entropy. It has been proposed to give

this name to the amount which can be made available.

As the usage in English works has come to be different from

that in foreign works, we will avoid the word altogether.

5. There are two general principles to which this method

has led.

Imagine a system A which possesses a certain store of

energy, and which can be completely isolated so that no

energy can pass out or in. Let it be connected in any way
with a system B possessing similar properties, and let no

energy pass except between these. Then the total energy of

all the different forms in A and B remains the same as

before. This is the law of the conservation of energy.

But the available energy is now less than when the

systems were separate. For that depends on the excess of

energy which one possessed over the other ; and by the

passage of energy between them the amount possessed by

the one is lessened and by the other increased. The two

systems are in fact brought more nearly to a level. Now,

as no system in nature can be completely isolated and

made energy-tight, every such system as A is always com-

municating its energy to those around it, as B, which pos-

sess less. And the available energy of all is being lessened.

This is the law of the dissipation of energy.

These laws are proved by experiment ; it is found that

energy which disappears in one form reappears in some other,

and to an equal amount. But for those forms of which we
can take cognizance in this science (viz.), the energy of

motion and of position, the conservation law can be deduced

from the laws of motion.

G. The potential energy of a system relatively to a force

is measured by the work which it can do against the force,

P. G. 10
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or by minus tlie work which the force can do upon it before

it reaches the position of zero force. It is therefore for one

force

the limits being given by the actual position and the position

of zero force ; for a number of forces it is

-^^{Xdx-\-Ydij-\-Zdz).

It is almost needless to remark that the origin from^ which

these co-ordinates are measured is a matter of convenience.

The kinetic energy of a particle of mass 7?i, moving with

velocity v, is the work it can do before being stopped. This

may be measured against any force. Let us choose gravity.

A particle of mass m projected upwards with velocity v will

move through a space ^ before stopping. It has thus pushed

back the point of application of the force tti^^ through a space

7/ . , , . v^ i^(v^ m •— Hence the work it has done is mg x— or —j-. ims
'2g

^
,
-^ -

may of course be expressed in any co-ordinates, as

m. \fdx\^ ,duV . fdz\^

dt) ^ \dt)'Z \\dtl \

or in one plane '^ Ig^) -r r (^^-) j
.

The kinetic energy of a moving rigid body is

J'-»-l(S)'*©'-

7. To establish the law of the conservation of energy,

we have then to shew that the gain or loss of kinetic energy

while the sy.stem passes from one configuration to another is

equal to the loss or gain of potential energy.

Let X, ;/, z be the co-ordinates of an element^ S;?i of the

system; ii, r, w its component velocities; A", Y, Z the com-
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ponents of the impressed forces. Then these are in. equi-

librium with the reversed effective forces. These last are

-^'"d-f -^"'dt' -^'"df

dii _ du dx _ dit _1 du'^

dt dx dt dx 2 dx
'

Thus the reversed effective forces may be expressed

Bm diu^ __
hn d{v^) _ hn d {uf)

"^fdx ' '2. dy ' 2 "dz '

Hence, by the principle of virtual velocities, if the point

X, y, z receive a displacement whose projections parallel to

the axes are hx, By, oz^

jMow suppose (1) that the displacements 3.r, %, Bz are

consistent with the geometrical relations of the system

;

for example, that they involve no breaking of connections.

Then in this equation X, Y, Z come to represent the im-

pressed forces whose virtual moments do not vanish.

Of all possible displacements one must be the displace-

ment due to the actual motion. If we suppose this to be the

one given to the system,

dx . d]! ly.

in which Is is the element of arc described bj x, //,

Whence the equation

'2 \dx dij ^ Liz

becomes

= t(Xhx-hYhiji-Zh^)

^^^'\d. ^ ds^'ds)—^C^<h^^ ds-^'-ds)

10—2
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Now suppose (2) that the forces A" Y, Z are functions

of the co-ordinates alone. Then this equation is integrable,

and gives rise to

\ S Sm {ic + ?;^ -}- ^r) = (7 + :S liXcU + Ydu + Zdz).

But the left-hand side of this is the kinetic energy, and

2/(AWx+ Ydy-vZdz)

is the work done by the forces on the system, (i.e.) the loss

of potential energy. The equation may therefore be ex-

]3ressed

:

the sum of the kinetic and potential energies is constant.

On the above supposition as to the forces,

]{Xdx + Ydy + Zdz)

will be a function of the limiting values of the co-ordinates.

Hence the work done by these forces is independent of the

paths pursued by the points of the body : such a system of

forces is called " Conservative."

8. The supposition (2) which we have made as to the

nature of the impressed forces limits the cases of motion

to which the principle, as expressed by the above equation,

can be applied. It excludes all cases into which sliding

friction enters, for this, depending on the direction of motion,

is not a conservative force. All effects of animal force, such

as a constraint of one part of the system to move according

to some given law, and all explosions or impacts of imper-

fectly elastic bodies, are excluded.

The nature of the forces thus excluded is easily seen

from the energy stand-point. The only forms of energy

which our present science can deal with, are the kinetic

energy of motion, and the potential energy of position.

That energy is conserved must mean to us that the sum
of the energies in these two forms is constant. If then,

in any case of motion, energy passes into or comes from

any other form, as when heat is generated by sliding friction,

or when energy is imported into the system through an

auimal or an explosion ; or when sound or other vibrations
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are produced ; in such cases, althougli the conservation
principle still holds true, the energy passes into forms which
do not come within the scope of Rigid Dynamics, and we
can only use the principle when we can make allowance
for the amount of the energy which has thus changed form.

The student who is familiar with the application of

virtual velocities to the theory of equilibrium, knows that
the forces which do not appear in that equation when the
displacement given is consistent with the geometrical re-

lations of the system, are (1) all internal pressures and
tensions between rigidly connected parts, (2) external forces

(as normal pressures) whose point of application experiences
no displacement in the direction of the force. There is to

be added to these rolling friction, whose point of application
being the instantaneous centre experiences no displacement.

9. The expression for the kinetic energy of a body

or system moving in one plane, viz. -Xom \l-j-j +('^

falls under the rule of Lesson IV, Art. 3. The kinetic

energy of a rigid body is therefore equal to that of the
whole mass supposed collected at its centre of inertia, and
moving with it, together with the similar function relative

to that point; i.e. to the kinetic energy of translation to-

gether with that of rotation.

Now the velocity of every point relatively to the centre

of inertia is rw, where w is the angular velocity, and r the
distance of the point from the centre of inertia. If then
V is the velocity of the centre of inertia, the kinetic energy
of the body is

or ^il/F^ + ^Fcol

If the motion is round a fixed axis about which the radius
of gyration is K, the kinetic energy is clearly

•»- -» r-r-ro a
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10. A TGvgh sphere of mass m and radius a, rolls in a

vertical plane inside of a fixed liorizontal cylinder of radius b.

Find the motion.

Let the velocity of the centre be v ; the angular velocity

CO ; the angle which the radius to the point of contact makes

witb the vertical 6. Then if the centre be at a height y
above its lowest point, its potential energy may be measured by

mgy, its kinetic energy is —\v + -^ crco- 1 ,v/hence

2
V" -f-

- a'6)^ + 2gy = constant.
o

I^ow the velocity of the point of contact is zero
;

.*. ?; — «w = 0,

also v= (b-a)-^, y={l^-a) (1 - cos 6) ;

therefore the equation of energy becomes

L(j)_ay
[
—

]
+ 2[/ {h -«)(!- cos 6) = constant.

To determine the constant, suppose the sphere projected

from the lowest point with velocity T. Then when 6 = 0,

(6-.)f=F;

7 ...
whence the constant is ^, F^ ; therefore the motion is given by

D

^rlO\^ _ F' _ 10^ 1 - COS ^

dt) ~(h-ay~ 7 b-a '

To find the time of a small oscillation, differentiate; then

d'e__ry sin6>

tlf~ 1^h-a'

whence the period of oscillation is ^tt lU —
^

-,
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11. A uniform ladder of mass va., slips down between

a smooth wall and a smooth hoi^izontal plane always keeping

in a vertical 'plane perpendicular to their intersection. Find
the motion.

Let the planes be those of y and x, and let 6 be the

angle which the ladder makes with the vertical at any time.

Then the angular velocity is ~j- and the linear velocity of

the centre of inertia is OG . -j. , since G keeps at a constant

distance from 0.

Hence the kinetic energy is

o. fd6'
f(o^'.//)Q

The potential energy is due to the height of G above
Ox, and is therefore

mg . OG cos 0;

therefore

~{0G' + F) f^j + ^ . 6> 6^ cos ^ = constant.

If the motion began when AB was vertical, this constant

isg. OG.
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\dt)
~

OG' + k'

wliicli can be aGfain inteo^rated, and 6 found in terms of t.

/f7(9\^ 2g.0G,{l- cos 6)
Whence i

\ - ^ ^ ^

''
-eft

12. If the object of our investigation is to find, not the

whole motion, but the motion in some particular position

or the position of instantaneous rest, this method has a

great advantage over earlier methods. In these, integration

is almost always necessary. The general problem is worked
out and the particular case deduced. Here the particular

case is the easier. Thus, suppose that in the above problem

it were required to find the angular velocity of the ladder just

before it reaches the ground. The kinetic energy is zero at

first, and the potential energy at last. Therefore the kinetic

energy at last, -^m (OG^ -{ If) oy^, must be equal to the po-

tential energy at first, (viz.) mr/ .
- AB.

13. A j^ci'^^t^cle is attached to the circumference of a
massive cylinder, and starting from the end of a horizontal

diameter pidls up another jiarticle hanging at the end of a
string tuoiind round the cylinder, by making the cylinder

rotate about its axis, which is liorizontal. Prove that if the

former particle first readies the loiuest point the ratio of the

TT
masses of the pa^rticles is ^ .

Here, both at first and at last the kinetic energy is zero.

Hence the potential energy gained by one particle is equal

to that lost by the other. But tlie cylinder turns through

a right angle ; therefore the particle attached to it descends

a depth equal to the radius ; while the other ascends a

height equal to one-fourth of the circumference. And these

spaces arc inversely as tlie masses of the particles. Therefore

the masses are in the ratio of the arc of the quadrant to

the radius.
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14. A uniform tube in the form of a common helix

(screw) of mass M can move round a vertical axis coincident

with one of the generating lines of its own cylinder. ^
A imr-

ticle of mass m is dro2:)ped in at the top.
^

Find its velocity

and the angular velocity of the tube when it has reached any

2)osition.

There are two principles which will give two equations

of motion. 1st, That the angular momentum of the whole

about the axis of rotation must remain zero ;
and, 2nd,

That the kinetic energy at the end must be equal to the

potential energy lost by the descent. Let the radius of the

cylinder be a. Let the inclination of the curve of the

screw to the vertical be a ; let « be the angular velocity

of the tube at any moment, v the velocity of the particle

relatively to the tube. Then its vertical velocity is v cos a,

and its horizontal velocity is compounded of the velocity of

the point of the helix at which it is, which is OP
.
co at

right angles to OP; and of v sin a relatively to the helix at

vhAit angles to CF.o o

The figure represents a horizontal section of the cylinder

of the screw, through the particle. is the axis of revolu-

tion, C that of the screw, F the particle.

Let /POO be called 6. Then ^OFC='^--^, and

OF = 2a . sin - .

The moment of the momentum of F about the vertical

axis through is mv sin a (a - a cos 6) + m. OF^ .
w.
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That of tlie tube is M2a^(o.

Hence, by the first princij)le,

d
mv sinin a . a (1 - cos ^) + m^a^ sin'^ -.(o-\-M 2a^a) = 0,

for initially the system was at rest.

Again, the square of the velocity of P is

v^ cos" a + v" sin" a + OPV + 2y sin a . OP
e

CO . sni

The moment of inertia of the tube about the axis through

is 2Ma\ Its kinetic energy is therefore Md'o}\

The total kinetic energy is

J/aW + -^iv'^ -\- 4a" sin^ -, co^ + 4a sin" -vsma.co

This must be equal to the loss of potential energy, which if

the height fallen through by the particle be It, will be mgh.
,

These two equations sufifice to give v and o).

15. A square formed of four similar iiniform rods

jointed freely at their ends, is laid upon a smooth horizontal

table, one of its angular points being fixed ; if angular veloci-

ties O, II' be communicated to the two sides containing this

angle, shew that the greatest value of the angle (2(p) between

them is given by the equation

5 (a -a')'

Let be the fixed point. The angular velocities of OA
and BG will be equal since these must remain parallel. Let

this be 0). And let that oi 00 and AB be w'.
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We will use for the solution of this the facts that the

whole angular momentum round remains unchanged and

that the kinetic energy remains constant.

The masses of the rods are equal, and will divide out of

each term in the equation. We may therefore take each as

unity. Let the length of each be 2a.

The angular momentum of OA is - - co.

The angular momentum of AB about is equal to the

angular momentum about its centre of inertia G, which

is ^^^ «', tosrether with the moment of momentum of its mass,
3 o

concentrated at G, about 0. Draw GM and GN perpen-

dicular to ^0 and AB. Now the velocity of G is com-
pounded of the velocity of A, 2aco along MG, and of its own
relative velocity, aco' along GN. And the moment of the

resultant momentum about any point is equal to the sum of

the moments of the separate momenta. It is therefore

2a(o . 0M+ aco' . ON,

or 2aw (^la + a cos 2(^5) + acd' (a + 2a cos 2.^).

Hence the whole angular momentum about is

4f (o) + o)') + ''^ (o) + o)') + (« + a>') 2a' (2 -i- cos 2^),

+ (« + w')a'(l + 2cos2^).

Now this is always equal to its initial value. But initi-

ally (o was fl, w was Q! and
2(f>

was a right angle. In the

final circumstances Avhich the question contemplates, tlie

angle
2(f>

has a maximum or minimum value. Hence co and
(a are equal.

Equating the values of the angular momentum in these

states

'5a^ . o . . o ^ A /^ . ^/v /5a^
2a) f -^- + oa' + 4a' cos 20) = (11 + ^')

f -7^-+ 5a^
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Consider next the kinetic energy.

That of OA is^ «' ; that of AB is
o

— 0)'^ + -ia^o)^ + a^co'^ + 4(rwa)' cos 2^.
o

The whole will be

'--,- + oa'^^ + Scro) &)' cos 2(^.

The initial and final values of these also are equal.

AVhence

2co' . --;; +Sco"- cos 2(^ - {n' + n'^)
"., .

\\ hence w' = _,^. ^, ^ (2).
10 + cos 2cf)

^ ^

Eliminating co from (1) and (2) we have the required

result.

16. The following general proposition*, which is due to

Clausius, is of such simple demonstration and of such value

ill molecular theories, that it ought to be better known in

England than it is.

Let X, y, z be the coordinates of an element hn of a

system not necessarily rigid.

Tlien — ^hnar = llhmx -r-

,

dt at

and j2S.^ = 2V8..f-f2VS,H(g;.

cPx
and Sm , .3 is the component in the direction of the axis of x,

of the whole force, whether external or constraining, which

acts uiiSm. Call this X,

* I am iudobted to Professor ]Max\Yell for my iulroducliou to this

subject.
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JsW = 22S».X.+ 228«.gt

so ^ SSm/ = 2tSmYy + 2tSm
(j^J,

and ~ t^mz" = 2^hnZz + ^thn Q\ .

Now let A, B, C be tlie moments of inertia of the system
about the axes.

Then Xhn {x' + tf + z') r=:]^ {A -\-
B -\- C).

Adding the above equations we have

-^«»{©'-(S)"-@)l-
Now su^Dpose the system to be such that A+B+ (7 does

not vary during the interval of time U. This will be the
case if the system be at rest: and 1st, if the system be a rigid
body rotating about certain fixed axes ; 2nd, if the system be
a homogeneous fluid whose particles are in motion but
which always occupies the same portion of space, for then
any element hm which moves away from a point is replaced
by another equal element ; 8rd, if the system consist of a
number of molecules each moving with a periodic motion
whose period is much smaller than ht ; for then the different

values of x, y, z for any molecule will recur many times in
the course of ht ; and in various other cases of motion.

All these kinds of motion are called "stationary." For
such we have

The right-hand expression is twice the kinetic energy of the
system

; that on the left hand Clausius proposes to call the
virial function. The virial equation holds whenever

1(^ +5+0=0.
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If tlie S3rstem is at rest, then the viiial fuQctlon vanishes

because Xy Y, ^separately vanish for every particle.

The above equation expresses that the virial function

is equal to twice the kinetic energy. The ptxrt of this

function which depends on internal forces admits of being

simplified.

17. Suppose the forces between any two particles at

a distance r to be R, Let it be considered positive when
it is repulsive. Then there are two terms in the above

sum which arise from the action between two particles at

j:^, y^, z^, and x^,y^_, z^ respectively. These terms are

Xx^ — Xoc,,,

>2

or -R -^ ' .x. + R -^ X. or R —^^- •

Now r^ = {x^ - rrJ' + (y. - y^ + (.?, - z^.

Whence 2- [Xx + Yy -^ Zz) = -V ^Rr.

If then the forces in any system are partly external, sym-

bolized by X, Y, Z; and partly internal actions symbolized

by R, the equation becomes

- % {Xx + Yy + Zz) + - Siir = kinetic energy.

The proposition will hold good for any direction and

for any number of particles. If the action R between the

particles is attractive the term %Rr is negative.

18. This equation is evidently of very general applica-

tion. It gives, through SiiV, a measure of the internal

forces in bodies, whatever the nature of these forces may
be, and whether the particles of the body are at rest or in

motion. Its most important application hitherto has been

to the kinetic theory of gases. This is beyond our limits
;

but we will shew how to apply it in one or two very simple

cases.

Suppose a thin ring of mass m and radins «7, composed

of a number of particles, to be rotating with angular velocity
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0) in its plane about its centre. Let B be the tension. Let

8s be the arc between two adjacent particles. Then by the

equation
SPtSs = ma^cD^.

But R is the same for all points of the ring,

and SSs = ^air
;

R _ "^^^^'^^

These equations can easily be verified by other methods.

Again, suppose a network of light cords in equilibrium

under any external forces A^, Y, Z acting at points x, y, z,

and let T be the tension along a cord of leugth r, then

EXAMPLES.

1. Prove that a flywheel of radius a rotating w^ith

velocity « has in it energy enough to raise a mass equal

to its own to a height —p- .

2. A cannon-ball of massM raises by its recoil a mass M
to a height of h feet. If the mass of the cannon-ball is m^

shew that its velocity of projection is

—.T-^gK
m' -^

J

8. A weight is attached to an elastic string which is

fastened to a point. Apply the principle of energy to de-

termine its motion when it falls from rest, the strmg being

initially vertical and unstretched.

4. A nut slides smoothly on its screw. If this be

placed in a vertical position and the nut be allowed to
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run down, prove that its angular velocity when it has

descended a space h, will be

(/j" + oJ^ tan'' a)

in which a is the radius of the screw-cylinder, a is the in-

clination of its tangent to the horizon, and k is the radius of

gyration of the nut about the axis.

5. A thin uniform smooth tube of length 2a is balancing

horizontally about its middle point which is fixed ; a uniform

rod whose mass is - th of that of the tube and whose
n

length is 2a, is placed end to end in a line with the tube,

and then shot into it with such a horizontal velocity that

its middle point shall only just reach that of the tube; prove

that if V is the velocity of projection of the rod, the an-

gular velocity of the tube and rod when their middle points

coincide is

f
>V \^

6. A circular ring is free to move on a smooth hori-

zontal plane on which it lies ; and a uniform rod has its

extremities connected with and moveable on the smooth

arc of the ring ; the system being set in motion on the

plane, shew that the angular velocity of the rod is constant

;

and describe the paths of the centres of the rod and ring.

7. A narrow smooth semicircular tube is fixed in a

vertical plane w^ith its vertex upwards, and a heavy flexible

string passing through it hangs at rest; shew that if the

string be cut at one of the ends of the tube, the velocity

which the longer portion of the string will have attained

when it is just leaving the tube will be

(nr/7)'' |27r-^(7r=-4)

I being the length of the longer portion, and a the radius

of the tube.
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8. A particle is suspended so as to oscillate in a cycloid

wliose vertex is at the lowest point ; if it begin to move
from a point distant a from the lowest point measured along

the curve, and the medium in which it moves give a small

resistance kv^ to the acceleration, prove that before it next

conies to rest energy will have been dissipated, which is

—^ of its original value.
o

9. A fine circular tube carrying within it a heavy par-

ticle is set revolving about a vertical diameter. Shew that

the difference of the squares of the absolute velocities of

the particle at any two given points of the tube, equidistant

from the axis, is the same for all initial velocities of the

particle and the tube.

10. A rough cylinder of radius a loaded so that its

centre of gravity is at a distance h from its axis is placed on

a board of n times its mass w^hich can move on a smooth
horizontal plane. Find the time of a small oscillation, and
prove that if I be the length of the simple equivalent

pendulum

?i + 1 ^ '

where h is the radius of gyration of the cylinder about a

horizontal axis through its centre of gravity.

11. A mass M of fluid is running round a circular

channel of radius a, with velocity u ; another equal mass
is running round a channel of radius h, with velocity v ; the

radius of the one channel is made to increase and the other

to diminish till each has the original value of the other.

Shew that the work required to produce the change is

12. A smooth thin tube in the shape of a quadrant of

a circle, of radius a, is fixed in a vertical plane with its

lowest radius horizontal. A heavy uniform inextensible

P. G. 11
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string, of length -^ , is held wholly within the tube and then

let go. Find the velocity during the subsequent motion.

13. A uniform imperfectly elastic beam, of length 2a
moving parallel to itself impinges on a fixed obstacle.

Prove that the kinetic energy after will be to that before

impact as 3c^ + eV to 8c^ + «^ ; c being the distance from

the middle point to the point of impact, and e the modulus
of elasticity.

14. A plane body is struck by a blow in its own plane.

Prove that the work done by the bloAV will be greater if

the body be free than if a point of the body were fixed.

15. Which of the systems described in the Problems at

the end of Lessons XI. and XII. are conservative ?

16. If A^ B, G be the moments of inertia round three

axes at right angles of a uniform cylinder rolling with

constant velocity along a plane
;
prove that

-^^{A + B+ C) is constant.

17. Verify the virial equation in the case of a uniform

chain hanging in the common catenary.
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PRECESSIONAL MOTIOK",

1. We have, in these introductory Lessons, avoided the

more complicated phenomena of motion. But there is one

class of motions of such paradoxical appearance and such im-

portant nature that we will state the phenomena and give a

general explanation of their cause.

Every one knows that a rapidly spinning top not only

rotates about its axis but with its axis about the vertical.

The explanation of the seasons depends on the fact that

the earth, while rotating and revolving, keeps its axis always

parallel to itself. But when its directions in successive years

are compared with one another, they are found not to remain
parallel but to move in a cone, pointing to different fixed

stars in the course of ages, and to take nearly 26,000 years to

return to the same direction. This is called the precession of

the equinoxes.

2. The whole of these phenomena can be illustrated by
one piece of apparatus, called Fessel's.

Let i^ be a metal disc or ring which can rotate freely

about the rod BA a.t the point A, but cannot move along
it. is a point at which the rod is supported either by a
pivot or by a long cord. Let there be means for suspending
irom the other side a weight W, of such size that it can
Ijalance B or overbalance it, or be overbalanced by it. Now
let B be set rapidly spinning in the direction of the arrow
head, and the system afterwards left to itself. And (1) let

W be so placed that it exactly balanced B when all was at

11—2
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rest. Then it is found that the axis COB continues to point

constantly in the same direction. In fact, if the workman-
ship is so good that R will spin for some considerable time,

the apparatus may be used, like Fouconlt's pendulum, to

give a visible proof of the earth's daily rotation. For, as

the earth rotates, the axis GOB wdiose direction is abso-

lutely fixed in space appears to rotate slowly backwards.

This is the case of a coin thrown up into the air and

made to rotate in its own plane. The only force is that of

gravity which acts through its centre of inertia. Hence it

will continue to rotate about the same direction unless it is

disturbed. (2) Let R overbalance W, as in the case of the

common top or the gyroscopic toy, in which indeed every-

thing on the left of is wanting. Then it is found that

the axis GOB rotates about the vertical, so that B approaches

and G recedes from us. (3) Let W overbalance R when
at rest. Then it is found that in the motion GOB rotates

about the vertical, so that B recedes and G approaches.

From this experiment it is clear that the motion of the

axis is caused by the couple due to gravity acting round

a horizontal axis.

In the case of the earth the couple is the attraction
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of tlie sun on tlie protuberant parts of the earth. Were the

earth a sphere there would be no processioru

The explanation of these phenomena, which we will now

give, is confessedly imperfect, but on its own suppositions it

is satisfactory. It is applied to the complete explanation of

precession and to accurate calculation in Airy's Mathemati-

cal Tracts.

3. Imagine a sphere rotating freely about a diameter

AOA' with angular velocity 11, and struck by an impulsive

couple which would, if the sphere were at rest, generate an

angular velocity co about a perpendicular axis OB. Then the

resultant angular velocity will be \/Q^^ + a)^ and the sphere

will rotate about OD where tan AOD = -^.

Now suppose that co is small compared with O, i. e. either

that the sphere is rotating rapidly or that the impulsive

couple is small. Then (^j may be neglected in comparison

Avith -^ , and thus we may say that the velocity of rotation

will not be altered by the blow, whereas the axis will.

(That OD will lie on the same side of OA as OB will be

seen by considering the resultant velocity of C.)

Now let another impulsive couple act on the sphere tend-

insr to cause rotation about an axis at ridit angles to OB, not
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in the plane A OB, but so that the planes of both the couples

pass through one line OK Then the body will begin to

rotate about the direction OD', DD' being at right angles to

the plane ODN\ and the angular velocity will be unchanged.

And if a number of such impulses act one after the other,

their planes all containing ON, the axis will proceed to

describe a pyramid (not necessarily re-entering) in space with

as vertex. But if the couples be equal and at equal

intervals, the pyramid will be regular and re-entering. And
again, if these impulses are numerous and small, so as to

approach the case of an accelerating couple, the pyramid

becomes a riii^ht circular cone, with as vertex and OiT
as axis.

Suppose that the impulse takes place at intervals of

time ht. Then in each interval the axis describes an angle

equal to AOD, i.e. to ^ . Now to complete a revolution

it must cover the whole cone. Let the semivertical angle

be a. To complete a revolution the axis must describe

"Itt sin a. And this it will do in time

27r sin a'
' 6)

4. Such are tlie proceedings of the axis of rotation in

space. If the end of each axis on the sphere were marked
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with chalk, how would the successive marks appear when
the sphere was stopped ?

Suppose the sphere to be beginning to rotate about J.

Let D, n be the positions in space of the ends of the next

two axes ; and let R, E' be the points of the sphere which

are to coiDcide with them when they become axes. Let the

lines in the figure represent planes through the centre of

the sphere. Then BAD is the angle through which the

sphere must turn while it rotates about A ;
and R'Ba must

be equal to BAD and D'Da together. Now AD, DD\ &c.

form an equiangular pyramid. Hence, as the sphere rotates

with constant velocity, and the impulses take place at equal

intervals of time, the locus of R—the successive chalk marks

—will be the angular points of an equiangular polygon.

If the impulses be all equal the polygon will also be equi-

lateral. In the limiting: case the marks will trace out a

circle on the sphere.

Let its radius be p. Then AD = AB,

And AB = /3 . / B'Ba in the limit

And since y:r ultimately vanishes

AB = pnu.

Again, AD (fig. Art. 3) = ^ z AOD = i?
^^

,

in which B denotes the radius of the sphere

;

therefore p^U = ^Ty and p = B ^2gT •
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The time in which the instantaneous axis passes through

all these positions in the sphere is-^y > i*®. the same as one

complete revolution of the sphere. This latter circle is there-

fore a very small one, and very quickly described compared
with that which its centre describes in space.

5. "We have considered a sphere, in order that every axis

might be a permanent axis of rotation. For if an axis of

rotation is not a principal one the forces introduced by the

motion tend themselves to alter the axis. Happily in the

important case of motion this supposition is not far wrong.

The earth is itself very nearly a sphere, and 12 is so large

compared with co that the circle described on the surface by the

locus of the end of the real axis of rotation is exceedingly small

(a few feet in radius), and may for all purposes be neglected.

The momental ellipsoid of a top is not so nearly a sphere.

It is an oblate spheroid. But here again the rotation is so

fast that the true axis is never far from the axis of figure,

and the centrifugal or other effective forces of motion have

never any effect that would interfere with the above reason-

ing. If the rotation is not fast the wobbling which sets in

shews that the axis of rotation is far from the axis of figure.

We see, then, that a top or the sphere described above is

not in general rotating about its axis of figure, but about a

not principal axis very close to it. This goes through its

various positions in the course of a single revolution of the

body, and the axis which is the mean of all these describes

in space a cone of finite size.

EXAMPLES.

1. A perfectly balanced gyroscope is rotating Avith given

angular velocity ; supposing it to be acted on by a small

constant couple in a vertical plane through its axis, find the

precession.
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2. Prove tliat the finite couple corresponding to « in

Art. 3 is ^- , A being the moment of inertia of the sphere

about an axis through the centre.

3. Assuming that the polar axis of the earth changes

its direction by 20*5" every year, and that the angle (a)

between the poles of the ecliptic and equator is 23J degrees

;

find the time which the polar axis takes to complete a revo-

lution in space.

4. Find the radius of the circle in which the axis of

rotation cuts the surface of the earth. (Radius of earth is

nearly 4000 miles.)

5. What time does it take to describe this circle ?

6. A top of mass m, whose centre of gravity is distant h

from its vertex, and whose radius of gyration about an axis

through the vertex at right angles to its axis of figure is k, is

rotatinof with its axis inclined at a to the vertical. Prove

that

CO gh sin a

It
^ ¥ •

7. Assuming that the rotation will be always about an

axis very near the axis of figure, prove that if the axis of the

top is observed to make a complete revolution about the ver-

tical in time T, the angular velocity of the top is

ghT
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DIFFERENTIAL EQUATIONS.

1. The complete analytical solution of a physical pro-

blem depends in general on that of a differential equation.

And each physical science depends in general on equations

of a particular type. It is therefore necessary for the student

of a department like the present to have a working ac-

quaintance with the class of equations peculiar to it. Hap-
pily this is easily acquired. A little practice, without

systematic study of a treatise on Differential Equations, is

all that is necessary. The solution of Differential Equations

being a reverse process is to some extent guess work. A
knowledge of the nature of the result seldom fails to suggest

its form.

In the following brief notes on differential equations,

which have been put together chiefly for reference, the

student must not expect a regular exposition of the subject,

but must be content to assume some of the principles and
solutions.

2. Many of the differential equations which present

themselves to the student of Rigid Dynamics are not capable

of complete solution. Those which are soluble, are mostly

of the class called "linear with constant coefficients";

i.e. in which the differential coefficients and the dependent

variable appear only in the first power, and with constant

coefficients. Here are some of the most common.

(1) ^^ + ax=bf{t).
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(3) S-.4f...=o

The order of a differential equation is the order of the

highest differential coefficient which occurs in it.

The complete solution of a differential equation must

contain as many arbitrary constants as the number which

expresses the order of the equation. For a differential

equation is formed by eliminating the constants in an ordi-

nary equation from the results of successive differentiations.

We can see that the solution of a physical problem

requires such constants; for, taking the case of pendulum

motion, all such bodies move after one law, but the velocity

or position of any one at any time will depend on the velocity

and position at starting. Hence in physical problems the

arbitrary constants are determined from the circumstances

of the motion being known in some one position or at some

one time.

Thus equations of the form (1) contain one constant, of

(2) two constants, and of (3) two each. Linear differential

equations have farther these properties.

(1) If the order is n, the addition of n independent

values of .r, each with an arbitrary constant, gives the com-

plete solution. For it satisfies all the conditions of a complete

solution.

(2) That part of the solution which contains the arbi-

trary constants is the same for all equations having the

same terms involving the dependent variable and its dif-

ferential coefficients. Thus the solution of (2) is found from

that of

by adding any particular value of x (without arbitrary

constants) which makes

If'^^di^^^
equal to cf[t).
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Lastly, every particular solution of a differential equa-
tion corresponds to a possible motion or other physical
condition.

3. First form.

j^+ax = lf{t).

Multiplying by e"^

Integrating

cce''' = A-\-hJG'''f{t)dt (1).

The following are important cases :

/ \ dx

The solution is x = Ae at

dx
(/5) --J- + ax = h sin nt.

The part of the solution involving the constant is ic = ^e""'.

For the second part we remark that x =p sin nt + q cos nt

will satisfy the equation provided p and q be properly
determined. To secure this, differentiate and substitute;

then

dm + qa) cos nt + {im — qn) sin nt = h sin nt

If these are identical,

p7i + qa = 0]

pa — qn = h\

whence the solution is

X = Ae'"* + -5 o (a sin nt — n cos nt).
n' + a ^

The solution might have been obtained from (1) by
remembering that Jc"' sin nt dt is of the form

e"' {p sin nt + q cos nt).
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The first part {Ae'""') of the solution indicates a gradually

diminishing or (if a be negative) increasing motion ; the

second indicates a motion of oscillation superimposed on

this.

4. Second form.

Consider first

g+„J+ J,; =,/(<).

S+4>^-«
it is clear that x = Ae"^* will satisfy it if m^ + am + Z» = 0, Let

7?ij, iy\ be the roots of this quadratic. Then the solution is

x^^Ae'^'^^ + Be'''^*.

: If the roots of the quadratic are impossible, and of the

form a±l3j-l,

the solution is x = e^ {A cos ^i-\-B sin ^t)

.

For the particular value that must be added when cfif) is

not zero, we must in general depend on happy thoughts.

The rules are. too long to be given here for all the cases.

The following are important

:

Solution. w=Ae"'^Be-'".

Solution. x^A(io^{nt^B) or A^mni^ Bo^o^rd,

(7) "^j^ + '^^ ~ ^ ^^^ ^® expressed

i(«-a-''(-5)-°-

C^) -^ + w^^ = a sin mi.
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The solution of

at

And it is clear that a; =^ sin 7nt will make

-7,5, + n^x = a sin mf,
at

if p have the right value. To determine p, differentiate

J)
sin mt twice and substitute. Then ~ pm^ + 7i^p = a

;

whence « = -^
:, , and the complete solution is

^ n — m

X = .4e"' + Be-""' + ^-^72 sin mt

The equation (/3) indicates a motion of oscillation whose

central point is the origin, and whose period is —-; (7) indi-
n

cates a similar motion with the central point at a distance

a

ti

from the origin.

5. Equations of the form (3) are in general the ex-

pression of co-existent oscillations, and the coefiQcients v/ill be

such as give a solution in sines and cosines.

d^x
,

dy . ^ "1

d'y
,

,dx .r ^ j

Assume x = A sin (iit + B),

9/ = A' con {nt + B),

It is evident that these will satisfy the equations, if A, A'

be suitably determined. To do this, dif{:erentiatc and sub-

stitute
- Atv" - Ana + hA = 0}

-A'n'''^cuiA-\-h'A' = 0i'
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A'
From these the ratio . is found, and also a quadratic for n\

Let the vakies of n^ be ??^^ r?/. Suppose them positive.

And suppose A' = /ji^A.

Then x = A^ sin {nj; + B,) + A^ sin (n.jt + ^,),

y = fiAj^ cos (Wj^ 4- B^) + /i,^2 ^^s
(^^-Z + -^2)-

In this ?i,, 7?2 and /i have definite values ; A^, A^, B^, B^

depend on the initial circumstances. As there are here

four constants no extension of generality is gained by taking

the roots —n^, — n^ of the biquadratic for ?i. The solution

indicates that there are two independent oscillations going

on together in x, and two also in y. If the values of ri^ are

not positive, x and y will involve exponentials.

6. "When the Differential Equations, at which we arrive

by eliminating unknown forces, are not completely in-

tcgrable, they can frequently be integrated once.

The equation

is of constant occurrence, especially in problems of sliding

triction. Assume i-j,] — lz\

^^^"^
dt ' df ~

dt
'

d'O dz
^^^

^dJ^-de'

The equation may therefore be written

J+2/(6).
= <^(e).

Multiplying by e-ff^^'^'^^, both sides become perfect in-

tegrals.

Integrating, ^e^//(^)^^ = A +/(/)(6')e^//(^>'^^ . d9.
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EXAMPLES.

1. What kind of motion is indicated by the equation

x—ct sin nt ?

2. Of what differential equation is x^at-^- Ae""^ the

solution ?

Solve the following equations :

dx , .

3. -r- -{ ax = oe .

at

. (Fx _ cZic . „

d^x ^dx .

df dt

d^x „
G. -TT+ ri^^ = « cos 7h/.

- dx ^1
7.

5i
+ «^ = 0|

J

8. -^^+"^ =

dv
-^; + «a? = c sm mt
dt

Prove that the equations

represent an oscillatory motion.
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MISCELLANEOUS PROBLEMS,

1. A rigid body in wliicli A, B, C are three points, moves
so that these come into the positions a, h, c. Aa, Bh, Co

being very small spaces given in magnitude and direction,

find the motion of translation and of rotation of the body.

2. A flywheel is driven by a piston acting on a crank

alternately up and down with a force P; find the limits

between which the velocity varies.

3. If a mass is animated by simultaneous velocities, its

moment of momentum about any axis is equal to the sum of

the moments of the separate momenta about that axis. How
does this appear ?

4. A lamina rotating in its plane about its centre of

inertia is suddenly brought to rest by sticking a two-pronged

fork into it. Shew (1) that the impulses on the prongs are

equal, (2) that they are of the same magnitude wherever the

fork is stuck in.

5. A w^heel of which an axle projecting on each side

forms a part, is supported in a vertical plane by having the

axle on each side resting on a pair of friction wheels each

of which is just like the first wheel and is similarly sup-

ported, and so on indefinitely; compare the inertia of the

whole system in relation to a rotation of the first wheel
Avith that of the first wheel alone.

6. A pendulum performs small oscillations in a medium
of which the resistance varies as the square of the velocity

;

given the number of oscillations in which the arc of oscilla-

tion is reduced one half, compare the original resistance

with the weight of the pendulum.

P. G. 12
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7. Shew that when the centre of gravity of any system

of material particles in motion passes through a point of

contrary flexure, the momentum of the system is in general

a maximum or minimum, and the resultant of the effective

forces is zero.

8. Two points B, C oi s. circular ring moveable in its

own plane about its centre are connected with a fixed point

A by elastic strings the natural length of each of which

is equal to the shortest distance c, between A and the ring.

Supposing the ring turned through any angle and let go,

calculate the motion and shew that the time of a small

-^
J

, where m is the mass of the ring, and \

the modulus of elasticity of the string.

9. A uniform bar of length 2a is suspended hori-

zontally by two parallel strings each of length I attached at

distances c from the middle point. It receives a small

angular disturbance so that it oscillates about a vertical

axis. Prove that it makes small oscillations in the same

time as a simple pendulum of length -^ .

oC

10. Prove that if any straight line (taken to be the

axis of z) is a principal axis at some point (not necessarily

, ... Xhuyz ^Smxz
the orio^in) —=^— = -—^— .

"^ ' y X

11. A uniform rod of length 2a has its ends on two

straight lines meeting at right angles in a point 0, and

makes an angle with one of them. Every point of the

rod is attracted to the point with a force .. y.

Prove that if p be the distance of an element of mass v^p

from the middle point of the rod

p sin lOciedp

{p' + a' - 'lap

12. A uniform revolving rod the centre of gravity of

which is initially at rest, moves in a plane under the action

uf a constant force in the direction of its length
;
prove that

2 KXd. + Yd, + Zd.) = 2,..
j_^ /

, ^^^^ _ ^^ J^,
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the square of the radius of curvature of the path of the rod's

centre of gravity varies as the versed-sine of the angle
through which the rod has revolved at the end of any time
from the beginning of the motion.

13. A particle is attached by a string to the end of

a rod n times as long as the string, which rotates in a given
manner about the other end; the whole motion taking place

in a horizontal plane. If 6 be the inclination of the rod
and string, and &> the angular velocity of the rod at the time
t, prove that

14. A uniform circular disc, whose upper surface is im-
perfectly rough, rests on a smooth horizontal table. A par-

ticle is tied by a stretched inextensible string to the centre

and then projected along the disc at right angles to the
string. Prove that the particle will come to rest on the
disc before the strinsf becomes slack.^&

15. A Catharine wheel is constructed by rolling a thin
casing of powder several times round the circumference of

a circular disc of radius a. If the wheel burn for a time T,

and the powder be fired off with relative velocity V along
the circumference, shew that the angle turned through by
the wheel will be

niii clo-fl-f-^)|,

where 2c is the ratio of the masses of the disc and powder.
The casing is supposed so thin that the distance of all the
powder from the centre of the disc is a.
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SUGGESTIONS AND RESULTS FOE, THE
EXAMPLES AND PROBLEMS.

I. Page 10.

(3) The unit of angular velocity is when the unit of cir-

cular measure is described in one second.

(4) The earth rotates once in 28 hours oG minutes

(nearly).

(7) At a distance — from the axis of the paddle-wheel.

(8) The reasoning is given in Lesson li. Art. 4.

(9) The cylinder fixed in space becomes a plane.

(10) The focus is at the instantaneous centre.

(11) The velocities of P and Q are proportional to their

distance from the intersection of ^P and JJQ.

XL Page 18.

(3) The points of contact are moving with the same

velocity.

(4) It has one rotation round the vertical axis and

another round the line of contact with the table.

(6) and (7) These appear from the identity of the laws

for the composition of forces, and those for the composition

of anovular velocities.
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III. Page 84.

(2) With a velocity represented by BB\

(3) Round a horizontal axis inclined to the line of

CO

wickets at tan - .

CO

(4) Diminishes.

(8) li V, (a be the acceleration of the centre and the

angular acceleration, the force required will be that found in

the Example Art. 9; and also a horizontal force hm {;o + ad)).

TV. Page 48.

(2) The centre of inertia is fixed.

(3) 30,000; 300,000.

(4) With constant velocity in a straight line.

(5) Any function of the forms

or the sum of such terms.

(6) On the whole hoop; the effective force is horizontal,

and is mass of hoop x ^ ; the couple is mass . d' . co. On the

part AB; the force acts at G, and is compounded of m.CG. co'

along GO, mv horizontally, and m.CG.co ^t right angles to

GC. The couple is c6 (moment of inertia about G) and

v = aco.

(7) Calling the centre of inertia of AB, G; the accelera-

tion of G relatively to A along GA is co" . b. That of A is

compounded of o)\2a along AG and ~^. 2a at right angles

to A 0. Hence the acceleration of A measured along BA is
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6)" . 2a COS (h ,- . 2a sin 6. The whole acceleration of G
at

^

along BA is

o)"^b + &)^2a cos
<i>
— ^1.' 2a sin (^.

y. Page 58.

(2) The angular momentum remains constant while the

moment of inertia diminishes.

(4) Vertically downwards.

(5) The angular momentum about the instantaneous

centre remains constant,

(7) The direction of the string must pass through the

centre of inertia.

(8) (Second part). There has been no external force,

and therefore all will come to rest again.

(9) He increases the angular momentum of projection.

(10) The angular and linear momenta do not alter in the

interval between the blows.

(12) Yes. By swinging his arm round in a horizontal

plane.

VI. PageGG.

(5) The only two bodies are a particle and a straight

od.n

(7) The side, its perpendicular bisector and the normal

to the plane.

(8) See Art. G.
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(10) An axis parallel to an edge.

(16) «^.

VII. Page 71.

(3) ^"^^i^ + i^Ti^a).

YIII. Page 80.

(6) The moment of inertia must be greatest.

IX. Page 87.

4
(1) A force equal to the weight of 44 - lbs.

o

(2) Neglecting the square of -r , the tension is
lb

(5) If V be the velocit}^ just before striking, and the

angle just found be called a, the couple will be

, ^ Fsin a. AC
mass AC X ^ .

X. Page 99.

(1) Because the long rod takes longer to fall.

(4) Let V be the velocity of the plate, and 2a the edge

of the cube. Then the cube will begin to rise up about its

3V
edge with angula.r velocity ^—,

oci

(5) See Art. 6.

(6) The distance of each from the fixed axis ddpends on

the moment of the resultant effective couple.
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(13) If be the fixed point, OA tlie rod, P the point

where the blow is struck, Q the required point, G the middle

point of QA^
0A' = 2.0P.AQ.0a.

XI. Page 114.

(2) The lengtli of the rod being 2a, and the angle it

makes with the vertical at first being a ; the angular velocity

when the angle with the vertical becomes 6 is the square root

„ 6g cos ^— cos a m . n •. • X-
of -^.-= ^ ,, . ihe centre oi gravity moves m a verti-

cal straight line.

(5) The angular momentum about that edge is un-

chansred.o

(6) First find the value of the pressure at one end. The
motion is the same as that of a compound pendulum.

(7) Prove that the pressure never vanishes.

(12) The ball starts forwards with four-sevenths of the

velocity of the centre of the wheel. It remains in contact

with the rim and rolls off backwards, leaving the wheel when
its direction from the centre makes an angle with the vertical

whose cosine is ^V- -^10 + -=—

;

^i^r , V heincr the velocity
17

[
7 (j{r + B))

' * -^

of the wheel and r, R the radii of the ball and wheel.

XIL Page 187.

(1) Consider each as acted on by an impulsive friction,

and take moments for each about its centre.

(3) Ths external force is {m + ni)g,

(4) The angular momentum about the instantaneous

centre of the bar remains zero.

(12) At the moment of greatest compression the velocity

of the ball and of the point it touches resolved along the nor-

mal are equal.
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(17) Displace the system, keeping and P fixed. Or
take moments for AB about A and for the whole system

about 0.

(19) Use the method of virtual velocities and give the

natural displacement.

(22) There is no rotation.

XIII. Page 159.

(3) Supposing m the mass, a the unstretched length

of the string, x the distance from the point of suspension,

and taking the point of suspension as the origin, the potential

energy due to the tension is I Tdoc, and that due to gravity is

— mgx.

Whence ^ mv^ -i-XJ-
—^ dx - mgx = - mga, X being the

modulus of elasticity.

(6) The common centre of inertia will move in a straight

line with uniform velocity ; and the centres of the ring and
rod will describe circles relatively to it.

(11) The angular momentum of each remains constant,

and the work goes to increase or diminish the kinetic energy.

(12) Observe that the velocities of all points of the

string are at any moment equal.

XIY. Page 168.

(1) If L be the couple and A the moment of inertia

;

the axis will rotate about the vertical in time ^ .

(3) The true time is 25,868 years. Take sin 23J° to

be •41.'

(4) Nearly four feet.

(5) One day.

P. G. 13
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XY. Page 17G.

(1) Oscillations of an increasing magnitude and constant
period about the same central point.

(2) -^-mx = a(l — mt).

(3) x = Ae-'' + (b-a)e\

(4) x = Ae' + Be''

(5) The additional terms must be of the form p + qt

(6) X = A sin 7it +5 cos nt + —. ^ cos mt

(8) Differentiating the second and substituting for -^

from the first, we find

-tX — a Y^ = c sm mt,
dt dt

the solution of which is y = A + Be"'"'^ +p sm 7nt + q cos mt,

in which A and B are arbitrary while p and q can be found
by differentiating and substituting.

(9) Solve as in Art. 5.

MISCELLANEOUS PROBLEMS.

(1) If a direction can be found along which the com-
ponents of Au, Bb, Cc are all equal this will be the direction

of translation. To this end, from any point draw Oa, Oh\
Oc parallel and proportional to them, and on these as diame-
ters describe spheres. If these intersect in p, Op is the re-

quired direction.

(2) The variation of kinetic energy is equal to the
variation of the potential energy.

(3) It follows from the parallelogram law.
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(5) The angular velocities diminish in geometrical pro-

gression.

(10) Suppose it is a principal axis at a distance c from

the origin. Using the symbols of Lesson viil. Art. 2, we
must have

Xdmzr cos {0 — a) = 0, Xdmzr sin (6 — a) = 0.

(11) X^x + YSy -\-Ztz for one element is ^ . Sr ; and the

variation of r is due to the displacement of the whole body.

(13) Resolve at right angles to the string, and introduce

the expressions for relative acceleration.

(15) The whole angular momentum is constant.

THE END.

CAMBEIDGE: PRINTED BT C. J. CLAY, M.A. AT THE UNIVEKSIIT PKESS.
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iEschyluS.—THE EUMENIDES. The Greek Text, with Intro-

duction, English Notes, and Verse Translation. By Bernard
Drake, M.A., late Fellow of King's College, Cambridge. 8vo.

The Greek text adopted in this Edition is based upon that of Wellauer.
" A most useful feature in the work is the Analysis of Mailer's cele-

brated dissertations
."—British Quarterly Review.

Aristotle. — an introduction to aristotle's
RHETORIC. With Analysis, Notes, and Appendices. By E
M. Cope, Fellow and Tutor of Trinity Coll. Cambridge. 8vo. 14J.

ARISTOTLE ON FALLACIES ; OR, THE SOPHISTICI
ELENCHI. With Translation and Notes by E. Poste, M.A.,
Fellow of Oriel College, Oxford. 8vo. 2,s. dd.

^^ It is not only scholarlike and careful, it is also perspicuous^—
Guardian. ''A work of great skill."—Satukbay Review.

Aristophanes.—THE birds. Translated into English Verse,
with Introduction, Notes, and Appendices, by B. H. Kennedy,
D.D., Regius Professor of Greek in the University of Cambridge.
Crown Svo. 6s.

"My wish," says the author, ^Wias been to prodtice a translation of
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For this purpose I have chosen English metres."

Blackie.—GREEK and ENGLISH DIALOGUES FOR USE
IN SCHOOLS AND COLLEGES. By John Stuart Blackie,
Professor of Greek in the Univ. of Edinburgh. Fcap. Svo. 2s. 6d.
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Cicero. — the second philippic oration, with
Introduction and Notes. From the German of Karl Halm.
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M.A., Fellow and Classical Lecturer of St. John's College,
Cambridge. Fourth Edition, revised. Fcap. 8vo. 5j.
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^^^^. "—Educational Times.
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Cicero—continued.

THE ORATIONS OF CICERO AGAINST CATILINA. With
Notes and an Introduction. From the German of Karl IIalm,

with additions by A. S. Wilkins, M.A., Owens College, Man-
chester. New Edition. Fcap. 8vo. 3^. 6d.

THE ACADEMICA OF CICERO. The Text revised and explained

by James Reid, M.A., Assistant Tutor and late Fellow of

Christ's College, Cambridge. Fcap. 8vo. 4^-. 6d.

The Notes have been written tkrou^s^kout ivith a practical reference to the

needs ofJunior students, 7mth a vieto to the final Classical Examina-
tion/or Honours at Oxford and Cambridge.

Demosthenes.

—

on the CROWN, to which is prefixed

^SCHINES AGAINST CTESIPHON. The Greek Text with

English Notes. By B. Drake, M.A., late Fellow of King's

College, Cambridge. Fifth Edition. Fcap. 8vo. ^s.

** A neat and useful edition"—Athen^^UM.
Greenwood.—THE ELEMENTS OF GREEK GRAMMAR,

including Accidence, In-egular Verbs, and Principles of Derivation

and Composition ; adapted to the System of Crude P'orms. By
L G. Greenwood, Principal of Owens College, Manchester. Fifth

Edition. Crown 8vo. 5^. dd.

Hodgson.—MYTHOLOGY FOR LATIN VERSIFICATION.
A brief Sketch of the Fables of the Ancients, prepared to be

rendered into Latin Verse for Schools. By F. Hodgson, B.D.,

late Provost of Eton. New Edition, revised by F. C. Hodgson,
M.A. i8mo. 3^.

Homer's Odyssey.—the NARRATIVE OF ODYSSEUS.
With a Commentaiy by John E. B. Mayor, M.A., Kennedy

Professor of Latin at Cambridge. Part I. Book IX.—XII. Fcap.

8vo. zs.

Horace.

—

the works of Horace, rendered into English

Prose, with Introductions, Running Analysis, and Notes, by

James Lonsdale, M.A., and Samuel Lee, M.A. Globe 8vo.

"i^s. (yd
;

gilt edges, 4J-. dd.
" Beyond all comparison, the ?nost accurate and trustivorthy of all

translations. "—ENGLISH CHURCHMAN.
THE ODES OF HORACE IN A METRICAL PARAPHRASE.

By R. M. HovENDEN, B.A., formerly of Trinity College, Cam-
bridge. Extra fcap. 8vo. O^s. 6d.

Juvenal.—THIRTEEN SATIRES OF JUVENAL. With a

Commentary. By John E. B. Mayor, M. A., Kennedy Professor

of Latin at Cambridge. Second Edition, enlarged. Vol. I. Crown

8vo. Ts. 6d. Or Parts I, and II. Crown 8vo. 3 J. 6d. each.

''A painstahing and critical edition."—iivECTATOR. f* For really

rit>e scholarship, extensive acquaintance with Latin literature, and

familiar knoivlalge of contineni.d criticism, ancient and modern, it is

nnsurpassM among English editions.'' -Edinburgh Review.
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Marshall.—A table of irregular greek verbs,
classified according to the arrangement of Curtius' Greek Grammar.
By J. M. Marshall, M. A., Fellow and late Lecturer of Brasenose
College, Oxford ; one of the Masters in Clifton College. 8vo.
cloth. New Edition. \s.
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Grufnmar ofDr. Curtius.

Mayor (John E. B.)—FIRST GREEK READER. Edited
after Karl Halm, with Corrections and large Additions by John
E. B. Mayor, M.A., Fellow and Classical Lecturer of St. John's
College, Cambridge. New Edition, revised. Fcap. 8vo. 4J-. dd.
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bodied in the annotations.'^—Educational Times.

Mayor (Joseph B.)
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greek for beginners. By the

Rev. J. B. Mayor, M.A., Professor of Classical Literature in

King's College, London. Part I., with Vocabulary, is. 6</. Parts

II. and III., with Vocabulary and Index, 3i-. 6d.y complete in ore
vol. New Edition. Fcap. 8vo. cloth, 4^. 6d.

" We knai(j of no book of the same scope so complete in itself or so zuell

calculated to make the study of Greek interesting at the very com-
fnencement.^^— STANDARD.

Nixon.—PARALLEL EXTRACTS arranged for translation into

English and Latin," with Notes on Idioms. By J. E. NixoN,
M.A., Classical Lecturer, King's College, Loudon. Part I.—
Historical and Epistolary. Crown 8vo. 3^-. 6d.

Peiie (John, M.A.)
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an introduction to greek
AND LATIN ETYMOLOGY. By John Peile, M.A., Fellow
and Assistant Tutor of Christ's College, Cambridge, formerly

Teacher of Sanskrit in the University of Cambridge. New and
Revised Edition. Crown 8vo. ioj-. 6d.
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Plato.—THE REPUBLIC OF PLATO. Translated into English,

with an Analysis and Notes, by J. Ll. Davirs, M.A.,and D. J.
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PlautUS.—THE MOSTELLARIA OF PLAUTUS. With Notes,

Prolegomena, and Excursus. By William Ramsay, M.A., for-

merly Professor of Humanity in the University ot Glasgow.
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Edited by Professor George G. Ramsay, M.A., of the University

of Glasgow. 8vo. 14J.

" The fruits of thai exhaustive research and that ripe and well-digested

scholarship which its author h'ought to bear upon everything that he

undertook are visible throughout

^

—Pall Mall Gazette.

Potts, Alex. W., M.A.—HINTS TOWARDS LATIN
PROSE COMPOSITION. By Alex. W. Potts, M.A., late
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THE AGRICOLA AND GERMANIA. Translated into English

by A. J. Church, M.A., and W. J. Brodribb, M.A. With

Maps and Notes. Extra fcap. Svo. 2s. 6^,
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Theophrastus. — the characters of theo-
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With Introduction and Notes. By R. C. Jebb, M.A., Public
Orator in the University of Cambridge. Extra fcap. 8vo. 6^. 6^.
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Thring.—Works by the Rev. E. THRING, M.A., Head Master
of Uppingham School.

A LATIN GRADUAL. A First Latin Constraing Book for
Beginners. New Edition, enlarged, with Coloured Sentence Maps.
Fcap. 8vo. 2s. 6d.

A MANUAL OF MOOD CONSTRUCTIONS. Fcap. 8vo. is. 6d.
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A CONSTRUING BOOK. Fcap. Svo. is. 6d.

Thucydides.—the SICILIAN EXPEDITION. Being Books
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and enlarged, with Map. By the Rev. Percival Frost, M.A.,
late Fellow of St. John's College, Cambridge. Fcap. Svo. 5^.
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Virgil.—THE WORKS OF VIRGIL RENDERED INTO
ENGLISH PROSE, with Notes, Introductions, Running Analysis,
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the book to the use of the English reader. " A more complete edition of
Virgil in English it is scarcely possible to concavethan the scholarly work
before us.''—Globe.

Wright.—Works by J. WRIGHT, M.A., late Head Master of

Sutton Coldfield School.
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A HELP TO LATIN GRAMMAR ; or, The Form and Use of Words
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V Carejully and lucidly written, and rendered as simple as possible by

the use in all cases of the inost elementajy fortn of investigation.

"

—
Athen^um.
Bayma.

—
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Blackburn (Hugh).— elements of plane
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enlarging his treatise on Dijerential Equations.

THE CALCULUS OF FINITE DIFFERENCES. Crown 8vo.
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Brook -Smith (J.)—ARITHMETIC IN THEORY AND
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Cambridge Senate-House Problems and Riders,
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J. C. Snowball, M.A., late Fellow of St. John's College.
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Ferrers.—AN ELEMENTARY TREATISE ON TRILINEAR
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Edition. Crown 8vo. 6s. 6d.
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matical sciences. . . . A book which is not likely to be got up unintelli-

gentlyy—Guardian.

AN ELEMENTARY TREATISE ON THE LUNAR THEORY,
with a Brief Sketch of the Problem up to the time of Newton.
Second Edition, revised. Crown 8vo. cloth. 5-^* ^'^'

" As an elementary treatise and introduction to the subject, we think it

may justly claim to supersede all former ones.
^'— London, Edin. and

Dublin Phil. Magazine.

Hemming.~AN ELEMENTARY TREATISE ON THE
DIFFERENTIAL AND INTEGRAL CALCULUS, for the

Use of Colleges and Schools. By G. W. Hemming, M.A.,
Fellow of St. John's College, Cambridge. Second Edition, with

Corrections and Additions. 8vo. cloth. ()s.

** Tha-e is no book in co7m?ion usefrom which so clear and exact a

knowledge of the principles of the Calculus can be so readily obtained.
^^—

Literary Gazette.

Jackson.—GEOMETRICAL CONIC SECTIONS. An Elemen-

tary Treatise in which the Conic Sections are denned as the Plane

Sections of a Cone, and treated by the Method of Projection.

By J. Stuart Jackson, M.A., late Fellow of Gonville and Caius

College, Cambridge. 4^-. dd.

Jellet (John H.)—a TREATISE ON THE THEORY OF
FRICTION. By John H. Jellet, B.D., Senior Fellow of

Trinity College, Dublin ; President of the Royal Irish Academy.
8vo. Zs. 6d.

" The work is one of great research, and ivill add much to the already

great reputation of its author."—Scotsman.

Jones and Cheyne.—ALGEBRAICAL EXERCISES. Pro-

gressively arranged. By the Rev. C. A. Jones, M.A., and C. II.

Cheyne, M.A., F. R. A. S., Mathematical Masters of Westminster

School. New Edition. i8mo. cloth. 2s. 6d.

Kelland and Tait. — introduction TO QUATER-
NIONS, with numerous examples. By P. Kelland, M.A.,
F.R.S., formerly Fellow of Queen's College, Cambridge; and

P. G. Tait, M.A., formerly Fellow of St. Peter's College, Cam-
bridge ; I'rofessors in the department of INIathcmatics in t)ie

University of Edinburgh. Crown 8vo. 7.^. 6d.

Kitchener.—a GEOMETRICAL NOTE-BOOK, containing

Easy Problems in Geometrical Drawing preparatory to the Study

of (;conietry. For the Use of Schools. By F. E. Kitchener,
M. A., Mathematical Master at Rugby. New Edition. 410. 2s.
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Morgan,

—

a collection of problems and exam-
PLES IN MATHEMATICS. With Answers. By H. A.
Morgan, M.A., Sadlerian and Mathematical Lecturer of Jesus

College, Cambridge. Crown 8vo. cloth. 6s. 6d.

Newton's PRINCIPIA. Edited by Professor Sir W. THOMSON
and Professor Blackburn. 4to. cloth. 2>'^s. 6d.

** Finding'' say the Editors, 'Uhat all the editions of the Principia are

now out of prints we have been induced to reprint Newton's last edition

[of i']26'] without note or cof}i7)ient, only introducing the ^Corrigenda' of

the old copy and correcting typographical errors." The book is of a

handsome size, with large type, fine thickpaper, and cleanly cut figures^

and is tJie only jnodern edition containing tJie w/iole of Neiuton'sgreat work.
" Undoubtedly tJie finest edition of tfie text of the * Principia ' wfiich Jias

Jiitfierto appeared.'''—EDUCATIONAL Times.

Parkinson.—Works by S. Parkinson, D.D., F.R.S., Tutor and

Prcelector of St. John's College, Cambridge.

AN ELEMENTARY TREATISE ON MECHANICS. For the

Use of the Junior Classes at the University and the Higher Classes

in Schools. With a Collection of Examples. Fifth edition, revised.

Crown 8vo. cloth. 9^. dd.

A TREATISE ON OPTICS. Third Edition, revised and enlarged.

Crown 8vo. cloth. 10^. dd.

Phear.—elementary hydrostatics. With Numerous
Examples. By J. B. Phear, M.A., Fellow and late Assistant

Tutor of Clare College, Cambridge. Fourth Edition. Crown
8vo. cloth. 5^. dd.

Pratt.—A TREATISE ON ATTRACTIONS, LAPLACE'S
FUNCTIONS, AND THE FIGURE OF THE EARTH.
By John H. Pratt, M.A., Archdeacon of Calcutta, Author of

*' The Mathematical Principles of Mechanical Philosophy. " Fourth

Edition. Crown 8vo. cloth. 6j. (>d.

Puckle.—AN ELEMENTARY TREATISE ON CONIC SEC
TIONS AND ALGEBRAIC GEOMETRY. With Numerous

Examples and Hints for their Solution ; especially designed for the

Use of Beginners. By G. H. Puckle, M.A. New Edition,

revised and enlarged. Crown 8vo. cloth. 7^. dd.
*

' Displays an intimate acquaintance with tJie difficulties likely to be

felt, together with a singular aptitude in removing tJian.'"—Athen^um.

Rawlinson.

—

elementary statics, by the Rev. George
Rawlinson, M. a. Edited by the P.ev. Edward Sturges,M. A.,

of Emmanuel College, Cambridge, and late Professor of the Applied

Sciences, Elpuinstone College, Bombay. Crown 8vo. cloth. 4^. dd.

Published under the authority of Iter Majesty's Secretary of State for

India, for use in the Government Schools and Colleges in India.

Reynolds,—MODERN METHODS IN ELEMENTARY
GEOMETRY. By E. M. Reynolds, M.A., Mathematical

Master in Clifton College. Crown 8vo. '^s. dd.
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Routh.—AN ELEMENTARY TREATISE ON THE DYNA-
MICS OF THE SYSTEM OF RIGID BODIES. With
Numerous Examples. By Edward John Routh, M.A., late

Fellow and Assistant Tutor of St. Peter's College, Cambridge;

Examiner in the University of London. Second Edition, enlarged.

Crown 8vo. cloth. 14^.

WORKS
By the REV. BARNARD SMITH, M.A.,

Rector of Glaston, Rutland, late Fellow and Senior Bursar

of St. Peter's College, Cambridge.

ARITHMETIC AND ALGEBRA, in their Principles and Appli-

cation ; with numerous systematically arranged Examples taken

from the Cambridge Examination Papers, with especial reference

to the Ordinary Examination for the B.A. Degree. Twelfth

Edition, carefully revised. Crown 8vo. cloth. \os. 6d.

* * To all those zvhose minds are sufficiently developed to comprehend the

sijnplest ?nathe?natical reasoning, and who have not yet thorojighly

mastered the principles of Arithmetic and Algebra, it is calciUatcd to

be of great advantage."—Athenaeum. ''Mr. Smith's -work is a most

useful publication. The rules are stated with great clearness. The

examples are well selected, and worked out with just sufficient detail,

without being encumbered by too minute explanations : and there pj-evails

throughout it that just proportion of theory and practice luhich is the

crowning excellence of an elementary work.''' —Dean PEACOCK.

ARITHMETIC FOR SCHOOLS. New Edition. Crown 8vo.

cloth. ArS. 6d. Adapted from the Author's work on " Arithmetic

and Algebra."

'^Admirably adaptedfor instruction, combining just sufficient theory

7uith a large and well-selected collection 0/ exercises for practice.""—
Journal of Education.

A KEY TO THE ARITHMETIC FOR SCHOOLS. Tenth

Edition. Crown Svo. cloth. %s. 6d.

EXERCISES IN ARITHMETIC. With Answers. Crown Svo.

limp cloth. 2s. 6c/.

Or sold separately, Part I. \s. ; Part II. \s. ; Answers, 6d.

SCHOOL CLASS-BOOK OF ARITHMETIC. i8mo. cloth. 3.9.

Or sold separately. Parts I. and II. lod. each; Part III. is.

KEYS TO SCHOOL CLASS-BOOK OF ARITHMETIC. Com-
plete in one volume, i8mo. cloth, 6s. 6d.; or Parts I., II., and

IH., 2s. 6d. each.

SHILLING BOOK OF ARITHMETIC FOR NATIONAL AND
ELEMENTARY SCHOOLS. i8mo. cloth. Or separately,

Part I. 2d.; Part 11. 3^/. ; Part III. jd. Answers, 6d.

THE SAME, with Answers complete. i8mo, cloth, is. 6d.
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Barnard Smith

—

continued,

KEY TO SHILLING BOOK OF ARITHMETIC. i8mo. cloth.

EXAMINATION PAPERS IN ARITHMETIC. l8mo. doth.

\s. 6d. The same, with Answers, i8mo. is. ^d.

KEY TO EXAMINATION PAPERS IN ARITHMETIC.
iSmo. cloth. 4J-, 6d.

THE METRIC SYSTEM OF ARITPIMETIC, ITS PRINCIPLES
AND APPLICATION, with numerous Examples, written

expressly for Standard V. in National Schools. Fourth Edition.

I Brno, cloth, sewed. 3<^.

A CHART OF THE METRIC SYSTEM, on a Sheet, size 42 in.

by 34 in. on Roller, mounted and varnished, price 3^. 6d. Fourth

Edition.
" IVe do not I'emember that ever we have seenReaching by a chart more

happily carried out.
^'—SCHOOL Board Chronicle.

Also a Small Chart on a Card, price \d.

EASY LESSONS IN ARITHMETIC, combining' Exercises in

Reading, Writing, Spelling, and Dictation. Part I. for Standard

I. in National Schools. Crown Svo. 9^.

Diagrams for School-room walls in preparation.
*

' We should strongly advise everyone to study carefully Mr. Barnard
Smith's Lessons \in Arithmetic, WHtin^, and Spelling. A more excel-

lent little work for a first introduction to knowledge cannot well be

written. Mr. Smith's larger Text-books on Arithmetic and Algeh-a are

already most favourably known, and he has proved now that the difficulty

of writing a text-book which begins ab ovo is really surmountable ; but we
shall be much mistaken if this little book has not cost its author more

thought and mental labour than any of his more elaborate text-books.

The plan to combine arithtnetical lessons with those in reading and spelling

is perfectly novel, and it is worked out in accordance with the aims of our

National Schools ; and we are convinced that its general introduction in

all elementary schools throughout the country will produce great educa-

tional advantages''—WESTMINSTER Review.

THE METRIC ARITHMETIC. ^Nearly ready.

Snowball.—THE ELEMENTS OF PLANE AND SPHERI-
CAL TRIGONOMETRY ; with the Construction and Use of

Tables of Logarithms. By J. C. Snowball, M.A. Tenth Edition.

Crown Svo. cloth. 7^'. 6^.

Tait and Steele.—a treatise on dynamics of a
PARTICLE. With numerous Examples. By Professor Tait and

Mr. Steele. New Edition, enlarged. Crown Svo. cloth. \os. 6d.

Tebay.—ELEMENTARY MENSURATION FOR SCHOOLS.
With numerous Examples. By Septimus Tebay, B.A., Head

Master of Queen Elizabeth's Grammar School, Rivington. Extra

fcap. Svo. 3J. (>d.

•• A very compact useful manual."—SiP^CTATOR.
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WORKS
By I. TODHUNTER, M.A., F.R.S.,

Of St. John's College, Cambridge.

'

** Mr. Todhuntcr is chiefly knaiun to students of Mathematics as the

author of a series of adfnirable 7}iaiheviatical text-hooks, which possess the

rare qualities of being clear in style and absolutely free from mistakes,

typographical or ^//i«^."—Saturday Review.

THE ELEMENTS OF EUCLID. For the Use of Colleges and
Schools. New Edition. i8mo. cloth, 3^. 6d.

MENSURATION FOR BEGINNERS. With numerous Examples.

New Edition. i8mo. cloth. 2s. 6d.
** For simplicity and clearness ofarrangement it is 7insurpassed by any

text-book on the subject which has come under our notice."— EDUCA-
TIONAL Times.
ALGEBRA FOR BEGINNERS. With numerous Examples. New

Edition. i8mo. cloth. 2s. (id.

KEY TO ALGEBRA FOR BEGINNERS. Crown 8vo. cloth.

6j. dd.

TRIGONOMETRY FOR BEGINNERS. With numerous Examples.

New Edition. iSmo. cloth. 2s. 6d.

KEY TO TRIGONOMETRY FOR BEGINNERS. Crown 8vo.

Ss. 6d
MECHANICS FOR BEGINNERS. With numerous Examples.

New Edition. i8mo. cloth. 4J-. 6<l.

ALGEBRA. For the Use of Colleges and Schools. Sixth Edition,

containing two New Chapters and Three Hiuidreil miscellaneous

Examples. Crown 8vo. cloth. 7^. 6d.

KEY TO ALGEBRA FOR THE USE OF COLLEGES AND
SCHOOLS. Crown 8vo. lo^. 6d.

AN ELEMENTARY TREATISE ON THE THEORY OF
EQUATIONS. Second Edition, revised. Crown 8vo. cloth.

Js. 6d.
** A thoroughly trustworthy^ complete, andyet not too elaborate treatise.'"

Philosophical Magazine.

PLANE TRIGONOMETRY, For Schools and Colleges. Fifth

l^Ldition. Crown 8vo. cloth. 5^.

A TREATISE ON SPHERICAL TRIGONOMETRY. New
Edition, enlarged. Crown 8vo. cloth. 4$-. 6d.

*
' For educational purposes this work seems to be superior to any others

OH the subject.'"—Crii'IC.

PLANE CO-ORDINATE GEOMETRY, as applied to the Straight

Line and the Conic Sections. V'.''ith numerous Examples. Fifth

Edition, revised and enlarged. Crown 8vo. cloth. 7j-. dd.
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Todhunter (I.)—continued.

A TREATISE ON THE DIFFERENTIAL CALCULUS. With
numerous Examples. Sixth Edition. Crown 8vo. cloth, los. 6d.

^^ Has already taken its place as the text-book on that subject."—
Philosophical Magazine.

A TREATISE ON THE INTEGRAL CALCULUS AND ITS
APPLICATIONS. With numerous Examples. Fourth Edition,

revised and enlarged. Crown 8vo. cloth, los. dd.

EXAMPLES OF ANALYTICAL GEOMETRY OF THREE
DIMENSIONS. Third Edition, revised. Crown 8vo. cloth. 4^.

A TREATISE ON ANALYTICAL STATICS. With numerous
Examples. Fourth Edition, revised and enlarged. Crown 8vo.

cloth. \os. (id.

A HISTORY OF THE MATHEMATICAL THEORY OF
PROBABILITY, from the time of Pascal to that of Laplace.

8vo. 18^.

RESEARCHES IN THE CALCULUS OF VARIATIONS,
principally on the Theory of Discontinuous Solutions : an Essay
to which the Adams Prize was awarded in the University of Cam-
bridge in 187 1. 8vo. ds.

A HISTORY OF THE MATHEMATICAL THEORIES OF
ATTRACTION, AND THE FIGURE OF THE EARTH,
from the time of Newton to that of Laplace. 2 vols. 8vo. 24s.

*' Si/c/i histories are at present more valuable than anginal work.

They at once enable the Mathematician to make himself master of all that

has been dons on the subject, and also give him a cine to the right method

of dealing liith the subject in future by shoiving him thepaths by which
advance has been ?nade in thepast . . . It is iinth unmi^igled satisjaction

that we see this branch adopted as his special subject lry> one whose cast oj

mind and self culture have made him one of the most accurate., as he cer-

tainly is the most learned^ of Cambridge Mathematicians
j'''—SATURDAY

Review.

Wilson (J. M.)—ELEMENTARY GEOMETRY. Books
I. II. III. Containing the Subjects of Euclid's first Four Books.

New Edition, following the Syllabus of the Geometrical Associa-

tion. By J. M. Wilson, M.A., late Fellow of St. John's Col-

lege, Cambridge, and Mathematical Master of Rugby School.

Extra fcap. 8vo. 3 J', dd.

SOLID GEOMETRY AND CONIC SECTIONS. With Appen-
dices on Transversals and Harmonic Division, For the use of

Schools. By J. M. Wilson, M.A. Second Edition. Extra fcap.

8va 3^. 6^.

Wilson (W. P.) — A TREATISE ON DYNAMICS. By
W\ P. Wilson, M.A., Fellow of St. John's College, Cambridge,
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and Professor of Mathematics in Queen's College, Belfast. 8vo.

*^This treatise supplies a great educational need.'^—Educational
Times.

Wolstenholme.— A BOOK OF mathematical
PROBLEMS, on Subjects included in the Cambridge Course.

By Joseph Wolstenholme, Fellow of Christ's College, some-
time Fellow of St. John's College, and lately Lecturer in Mathe-
matics at Christ's College. Crown 8vo. cloth. Si'. 6d.

'* Judicious^ symmetrical^ and well arranged^— Guardian.

SCIENCE.
ELEMENTARY CLASS-BOOKS.

It is the intention of the Publishers to produce a com-

plete series of Scientific Manuals, affording full and ac-

curate elementary information, conve)^ed in clear and
lucid English. The authors are well known as among
the foremost men of their several departments ; and their

names form a ready guarantee for the high character of the

books. Subjoined is a list of those Manuals that have

already appeared, with a short account of each. Others

are in active preparation ; and the whole will constitute a

standard series specially adapted to the requirements of be-

ginners, whether for private study or for school instruction.

ASTRONOMY, by the Astronomer Royal.
POPULAR ASTRONOMY. With Illustrations. By SlR G. B.

Airy, K.C.B., Astronomer Royal. New Edition. i8mo.
cloth. dfS. 6d.

Six lectures^ intended " to explain to intelligent persons the principles

on which the instruments of an Observatory are constructed^ and the

principles on which the observations 7nade with these instruments are

treated for deduction oj the distances and iveights of the bodies of the

Solar System.''^

ASTRONOMY.
ELEMENTARY LESSONS IN ASTRONOMY. With
Coloured Diagram of the Spectra of the Sun, Stars, and
Nebuloe, and numerous Illustrations. By J. Norman Lockyer,
F.R.S. New Edition. i8mo. ^s. ()d.

" Full, clear, sound^ and worthy of attention, not only as a popular expo-

sition, but as a scientific 'Index.'''—Athen^.um. *' The 7nost fasci-

nating of elementary books on the Sciences.''—NONCONFORMIST.
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Elementary Class- Books

—

cofitirmed.

QUESTIONS ON LOCKYER'S ELEMENTARY LESSONS
IN ASTRONOMY. For the Use of Schools. By JOHN FORBES-
RoBERTSON. i8mo. cloth limp. is. 6d.

PHYSIOLOGY.
LESSONS IN ELEMENTARY PHYSIOLOGY. With
numerous Illustrations. By T. H. Huxley, F.R.S., Professor
of Natural Flistory in the Royal School of Mines. New Edition.
i8mo. cloth. 4^'. 6d.

** Puregold throughotU. "

—

Guardian. " Unquestionably the clearest

and most complete elc77ientary treatise on this subject that we possess in
any language."—Westminster Review.
QUESTIONS ON HUXLEY'S PHYSIOLOGY FOR SCHOOLS.

By T. Alcock, M.D. i8mo. is. 6d.

BOTANY.
LESSONS IN ELEMENTARY BOTANY. By D. Oliver,
F.R.S., F.L.S., Professor of Botany in University College, London.
With nearly Two Hundred Illustrations. New Edition. iSmo.
cloth. 4J-. (>d.

CHEMISTRY.
LESSONS IN ELEMENTARY CHEMISTRY, INORGANIC
AND ORGANIC. By Henry E. Roscoe, F.R.S., Professor of
Chemistry in Owens College, Manchester. With numerous Illus-

trations and Chromo-Litho of the Solar Spectrum, and of the Al-
kalies and Alkaline Earths. New Edition. i8mo. cloth. 4^.6^.

" As a standard general text-book it deserves to take a leadingplace."—
Spectator. '* IVe unhesitatingly pronounce it the best of all our
elementary treatises on Chemistry."—MEDICAL TiMES.

POLITICAL ECONOMY.
POLITICAL ECONOMY FOR BEGINNERS. By Millicent
G. Fawcett. New Edition. i8mo, 2s. 6d.

** Clear, compact, andcomprehensive.'''—Daily News. " The relations

of capital and labour have never been more simply or more clearly

expounded."—Co^T'E.yivo'SiXKV Review.

LOGIC.
ELEMENTARY LESSONS IN LOGIC ; Deductive and Induc-
tive, with copious Questions and Examples, and a Vocabulary of
Logical Terms. By W. Stanley Jevons, M. A., Professor of Logic
in Owens College, Manchester. New Edition. i8mo. 3^. 6d.

*' Nothing can be better for a school-book."—Guardian.
''\A inanual alike simple, interesti^tg, and scientific."—AtheN/CUM.

PHYSICS.
LESSONS IN ELEMENTARY PHYSICS. By Balfour
Stewart, F.R.S., Professor of Natural Philosophy in Owens
College, Manchester. With numerous Illustrations and Chromo-

B
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Elementary Class-Books

—

continued.

liths of the Spectra of the Sun, Stars, and Ncbulse. New Edition.

iSino. 4J". 6;/.

" The beau ideal of a scientific text-hook, clear, accurate, and thorough."

Kducational 7"xmes.

PRACTICAL CHEMISTRY.
THE OWENS COLLEGE JUNIOR COURSE OF PRAC-
TICAL CHEMISTRY. By Francis Jones, Chemical Master

in the Grammar School, Manchester. With I'reface by Professor

RoscoE. With Illustrations. New Edition. i8mo. is. bd.

ANATOMY.
LESSONS IN ELEMENTARY ANATOMY. By St. George
MiVART, F.R.S., Lecturer in Comparative Anatomy at St. Mary's

Hospital. With upwards of 400 Illustrations. iSmo. 6s. 6d.

"// may be questioned ivhethcr any other work on Anatomy contains

in like compass so proportionatelygreat a mass ofinformatioii."—La ncet.
" The ivork is excellent, and should be in the hands of every student of

human anatomy.'"-—Medical Times.

STEAM.— AN ELEMENTARY TREATISE. By John Perry,
Bachelor of Engineering, Whitworth Scholar, etc., late Lecturer in

Physics at Clifton College. With numerous Woodcuts and
Numerical Examples and Exercises. iSmo. 4.*-. 6c/.

MANUALS FOR STUDENTS.
Flower (W. H.)—an introduction to the oste-

OLOGY OF THE MAMMALIA. Being the substance of

the Course of Lectures delivered at the Royal College of Surgeons

of England in 1870. By W. H. Flower, F.R.S., F.R.C.S.,

Hunterian Professor of Comparative Anatomy and Physiology,

With numerous Illustrations. Globe 8vo. ']s. 6d.

Hooker (Dr.)—THE STUDENT'S FLORA OF THE
lUUTISH ISLANDS. By J. D. IIoo^cer, C.B., F.R.S.,

M.D., D.C.L., President of tlie Royal Society. Globe 8vo.

icy. td.
** Cannotfail to perfectly fulfil the purpose for zohich it is intended^—

Land and Water.— " Containing the fullest and most accurate

manual of the kind that hasyd appeared:'—YhiA. Mall Gazette.

Oliver (Professor).—FIRST BOOK OF INDIAN botany.
By Daniel Oliver, F.R.S., F.L.S., Keeper of the Herbarium

and Library of the Royal Gardens, Kew, and Professor of Botany

in University College, London. W^ith numerous Illustrations.

Extra fcap. 8vo. ds. 6d.
*' It contains a 7i'ell-digested summary of all essential knoioledgepertain-

ing to Indian botany, ivrought oict in accordance -anth the best pritu-ifles

of scientific arram^ement:'—Allen's Indian Mail.

Othet volumes of these Manuals willfollow.
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NATURE SERIES.
THE SPECTROSCOPE AND ITS APPLICATIONS. By J.Norman Lockyer, F.R.S. With Coloured Plate and numerous

illustrations. Second Edition. Crown 8vo. 3^. 6^.

THE' ORIGIN AND METAMORPHOSES OF INSECTS, By
Sir John Lubbock, M. P. , F. R. S. With numerous Illustrations.
Second Edition. Crown 8vo. 3^. (>d.

" We can most cordially recommend it to young naturalists.^^—Athe-
N^UM.
THE BIRTH OF CHEMISTRY. By G. F. Rodwell, F.R.A.S.,

F.C.S., Science Master in Marlborough College. With numerous
Illustrations. Crown 8vo. 3^. dd.

" We can cordially recommend it to all Students of Chemistry.
'^—

Chemical News.

THE TRANSIT OF VENUS. By G. Forbes, M.A., Professor of
Natural Philosophy in the Andersonian University, Glasgow.
Illustrated. Crown Svo. 3J. 6^.

Other volumes to follcnv.

Ball (R. S., A.M,)~EXPERIMENTAL MECHANICS.
A Course of Lectures delivered at the Royal College of Science
for Ireland. By R. S. Ball, A.M., Professor of Applied
Mathematics and Mechanics in the ^Royal College of Science
for Ireland. Royal Svo. i6j.

Clodd.—THE CHILDHOOD OF THE WORLD: a Simple
Account of Man in Early Times. By Edward Clodd, F.R.A.S.
Third Edition. Globe Svo. 3^. Also a Special Edition for
Schools. iSmo. \s.

Professor Max Muller, in a letter to the Author, says: ''I read
yoicr book with great pleasure. I have no doubt it imll do f^ood, and I
hopeyou will continue your zvork. Nothing spoils our temper so mjich as
having to tmlearn in youth, manhood, and even old age, so many things
which we luere taught as children. A book like yours will prepare a far
better soil in the child's miftd, and I zms delighted to have it to read to

my children.''^

Cooke (Josiah P., Jun.)— FIRST PRINCIPLES OF
CHEMICAL PHILOSOPHY. liy Josiah P. Cooke, Jun.,
Ervine Professor of Chemistry and Mineralogy in Harvard College.
Third Edition, Revised and Corrected. Crown Svo. \2s.

Thorpe (T. E.)_A series OF CHEMICAL PROBLEMS,
for use in Colleges and Schools. Adapted for the preparation of
Students for the Government, Science, and Society of Arts Ex-
aminations. With a Preface by Professor Ro.'^coE. iSmo.
cloth. \s. Key. \s.

B 2
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SCIENCE PRIMERS FOR ELEMENTARY
SCHOOLS.

The necessity of commencing the teaching of Science in Schools at an
early stage of the pupil's course has now become generally recog-

nized, and is entorced in all Schools under Government inspection.

For the purpose of facilitating the introduction of Science
Teaching into Elementary Schools, Messrs. Macmillan are now
publishing a New Series of Science Primers, under the joint

Editorship of Professors Huxley, Roscoe, and Balfour
Stewart. The object of these Primers is to convey information

in such a manner as to make it both intelligible and interesting to

pupils in the most elementary classes. They are clearly printed on
good paper, and illustrations are given whenever they are necessary

to the proper understanding of the text. The following are just

published :

—

PRIMER OF CHEMISTRY. By H. E. Roscoe, Professor of

Chemistry in Owens College, Manchester. iSmo. is. Third
Edition.

PRIMER OF PHYSICS. By Balfour Stewart, Professor of

Natural Philosophy in Owens College, Manchester. i8mo. \s.

Third Edition.

PRIMER OF PHYSICAL GEOGRAPHY. By Archibald
Gkikie, F.R. S., Murchison-Professor of Geology and Mineralogy
at Edinburgh. Second Edition. i8mo, is.

Everyone ought to knew something about the air we breathe and the

earth we live 7tpon, and about the relations between them; and in this

little work the author tvishes to shoiu what sort of questions may be put
about some of the chiefparts of the book ofnattcre, and especially about tvjo

op them—the Air and the Earth. The divisions of the book are as

follozvs :—The Shape of the Earth—Day and Night—The Air— The
Circulation of Water on the Land— The Sea— The^Inside of the Earth.

PRIMER OF GEOLOGY. By Professor Geikie, F.R.S. With
numerous Illustrations. Second Edition. iSmo. cloth, is.

In these Primers the authors have aimed, not so much to give inforina-

tioHy as to endeavour to discipline the mind in a xuay which has not

hithei'to been custojuary, by b}-itiging it into immediate contact ivith

Nature herself. For this purpose a series of sitnple experiments (to be

performed by the teacher) has been devised, leading up to the chief truths

of each Science. Thus the power of observation in the pupils will be

awakened and strengthe?ied. Each Man^ial is copiously illustrated, and
appended are lists of all the necessary apparatus, zoith prices, and
directions as to hon.v they may be obtained. Professor Huxley's introduc-

tory volume has been delayed through the illness of the author, but it is

now expected to appear very shortly. " They are wonderfully clear atui

lucid in their instruction, simple in style, and admirable in plan.'''—
Educational Times.
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Science Primers—co7itinucd.

PRIMER OF PHYSIOLOGY. By Michael Foster, M.D.,
F.R. S. With numerous Illustrations. i8mo. \s.

In preparatio7i

:

—
INTRODUCTORY. By Professor Huxley.
PRIMER OF BOTANY. By Dr. Hooker, C.B., F.R.S.
PRIMER OF ASTRONOMY. By J. Norman Lockyer, F.R.S.

MISCELLANEOUS.
Abbott.—A SHAKESPEARIAN GRAMMAR. An Attempt to

illustrate some of the Differences between Elizabethan and Modern
English. By the Rev. E. A. Abbott, M. A., Head Master of the

City of London School. For the Use of Schools. New and
Enlarged Edition. Extra fcap. 8vo. 6s.

"A critical inquiry, conducted ivith great skill and knowledge^ and
zuith all the appliances of modern philology .... We venture to believe

that those who consider themselves most proficient as Shakespearians

will find something to learn from its pages.'"—Pall Mall Gazette.
" Valuable not 07tly as an aid to the critical study of Shakespeare, but

as tending to familiarize tlu reader with Elizabethan English in

gener-al.^''—Athen^um.
Barker.—FIRST LESSONS IN THE PRINCIPLES OF

COOKING. By Lady Barker. i8mo. \s.

^' An unpretending but invaluable little work .... The plan is

admirable in its completeness and simplicity ; it is hardly possible that

anyone who can read at all can fail to understand the practical lessons on
bread and beef, fish and vegetables ; while the explanation of the chemical

composition of our food must be intelligible to all who possess sufficient

education to follow the argtcment, in which thefeivest possible technical

terms are used.''''—SPECTATOR.

Berners.—FIRST LESSONS ON HEALTH. By J. Ber-
NERS. iSmo. IS. Third Edition,

Besant.—STUDIES IN EARLY FRENCH POETRY. By
Walter Besant, M.A. Crown 8vo. Sj. dd.

'* In one moderately sized volume he has contrived to introdttce us to the

very best, if not to all of the early French poets.''—K-YYiY^iimjUL. ''In-

dustry, the insight of a scholar, and a gemmie enthusiasm for his subject,

combine to make it of very considerable value."—Spectator.

Breymann.—A FRENCH GRAMMAR BASED ON PHI-
LOLOGICAL PRINCIPLES. By Hermann Breymann,
Ph.D., Lecturer on French Language and Literature at Owens
College, Manchester. Extra fcap. 8vo. 4^. dd.

*' We dismiss the work with every expression of satisfaction. It can-

notfail to be taken into use by all schools which endeavour to make the
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study of French a means towards the higher cuUiirey—Educational
Times. ^^ A good, sound, valuablephilological grajnmar. The author

presents the pupil by his method and by detail, with an enormous amount
of informatio7i about French not usually to befound in grammars, and
the information is all of it of real practical value to the student who
really wants to know French well, and to understand its spirit . . . At
tJu end a long chapter called ' Reasons and Illustrations ' forms an
exceedingly interesting and valuable dissertation 7ipo?i French philo-

Z^^/."—School Board Chronicle.

Calderwood.—HANDBOOK of moral PHILOSOniY.
By the Rev. Henry Calderwood, LL.l)., Professor of Moral
Philosophy, University of Edinburgh. Second Edition. Crown
8vo. 6s.

" A compact and useful work .... will be an assistance to many
students outside the author''s own University.'^—Guardian.

Deiamotte.—A BEGINNER'S drawing book. By p. H.
Delamotte, F.S.A. Progressively arranged. New Edition,

improved. Crown 8vo. 3^-. 6d.
'* We have seen and exa?nined a great many drazving-books, but the one

now before us strikes us as being the best of them all."—Illustrated
Times. ^* A concise, simple, and thoroughly practical zvork. The
letterpress is throughout intelligible and to the poitit."—Guardian.

Goldsmith.

—

the traveller, or a Prospect of Society;

and THE DESERTED VILLAGE. By Oliver Goldsmith.
With Notes Philological and Explanatory, by J. W. Hales, M. A.
Crown 8vo. (>d.

Green.—A history of the English people. By the

Rev. J. R. Green, M.A. For the use of Colleges and Schools.

Crown 8vo.

Hales.

—

longer English poems, with Notes, Philological

and Explanatory, and an Introduction on the T*eaching of English.

Chiefly for use in Schools. Edited by J. W. Hales, M.A., late

Fellow and Assistant Tutor of Christ's College, Cambridge,

Lecturer in English Literature and Classical Composition at King's

College School, London, &c. &c. Extra fcap. 8vo. ^. 6d.

Helfenstein (James).—a COMPARATIVE GRAMMAR
OF THE TEUTONIC LANGUAGES. Being at the same

time a Historical Grammar of the English Language, and comprising

Gothic, Anglo-Saxon, Early English, Modern English, Icelandic

(Old Norse), Danish, Swedish, Old High German, Middle High

German, Modern German, Old Saxon, Old Frisian, and Dutch.

By James Helfenstein, Ph.D. 8vo. i8j.

Hole.—A GENEALOGICAL STEMMA OF THE KINGS OF
ENGLAND AND FRANCE. By the Rev. C. Hole. On
Sheet. IS.
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Jephson.—SHAKESPEARE'S "TEMPEST." With Glossarial

and Explanatory Notes. By the Rev. J. M. Jephson. Second

Edition. i8mo. is,

Kington-Oliphant.—THE SOURCES OF STANDARD
ENGLISH. By J.

Kington-Oliphant. Extra fcap. 8vo. ds.

" Mr.piipkant^s look is, to our 7?iind, one of the ablest and most

scholarly contributions to our standard English we have seen for many
years. . . . The arrangei)ient of the ivork and its indices make it in-

valuable as a work of reference, and easy alike to study and to store, when

studied, in the memory:'—"^QWQox. Board Chronicle, " Comes

nrarer to a history of the English language than anything that we have

seen since such a history could be written without confusion and con-

tradictionsy—Saturday Revi ew.

Martin.—the POET'S HOUR: Poetry Selected and Arranged

for Children. By Frances Martin. Second Edition. i8mo.

2j. (>d.

Nearly 200 Poems selected frovi the best Poets, ancient and modern^

and intended mainlyfor children betzveen the ages of eight and twelve,

SPRING-TIME WITH THE POETS. Poetry selected by Frances
Martin. Second Edition. iSmo. y. 6d.

Intended mainlyjor girls and boys bettveen the ages of twelveand seven-

teen.

Masson (Gustave).—a COMPENDIOUS DICTIONARY
OF THE FRENCH LANGUAGE (French-English and English-

French). Followed by a List of the Principal Diverging Deriva-

tions, and preceded by Chronological and Ili.-torical Tables. By
Gustave Masson, Assistant-Master and Librarian, Harrow

School. Square half-bound, 6s.

This volutne, though cast in the same form as other dictionaries, has

several distinctive features which increase its valuefor the student. In the

Erench-English fart, etymologies, founded on the researches of Messrs.

Littrc, Scheler, and Bracket, are given. The list of diverging deriva-

tions, at the end of the volmne, zvill be very useficl
^
to those ^ who are

uitcrested in tracing the various dcvtlofments of original Latin words.

But that zvhich makes it almost indispensable to students of the political

and literary history of France, is to befound at the beginning oj the work,

where M. Masson has drawn up clear and complete tables of historical

events., vienjed in connection with the developments of literature and lan-

guage, between the death of Charlemagne, 814 A.D., and that of Louis

Philippe, 1850. These tables are illustrated l)y remarks on the various

social moods, of which the works produced were the expression. Appended

also is a list of the principal Chronicles and Memoirs on the History of

Erance zvhich have appeared up to the present time; the French Re-

publican Calendary compared zoith the Gregorian; and a Chronological

list of the principal Erench iVezvspapers published during the Revolution

and the Eirst Empire,
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Morris.—Works by the Rev. R. Morris, LL.D., Lecturer on
English Language and Literature in King's College School.

HISTORICAL OUTLINES OF ENGLISH ACCIDENCE,
comprising Chapters on the History and Development of the
Language, and on Word-formation. Third Ediiion. Extra fcap.
8vo. 6s.

" It makes an era in the study o/ the English tongue^—SATURDAY
Review. ^^ He has done his work unth a ftdness and completeness
that leave nothing to be </^j-?>^./."—Nonconformist. ^' A genuine
and sound book. "

—

Athen^um.
ELEMENTARY LESSONS IN HISTORICAL ENGLISH

GRAMMAR, Containing Accidence and Word- formation. i8mo.
2s. 6d.

Oppen.—FRENCH READER. For the Use of Colleges and
Schools, Containing a graduated Selection from modern Authors
in Prose and Verse ; and copious Notes, chiefly Etymological. By
Edward A. Oppen. Fcap. 8vo. cloth. 4^. 6d.

Pylodet.—NEW GUIDE TO GERMAN CONVERSATION:
containing an Alphabetical List of nearly 800 Familiar Words
similar in Orthography or Sound and the same Meaning in both

Languages, followed by Exercises, Vocabulary of Words in

frequent use, Familiar Phrases and Dialogues; a Sketch of German
Literature, Idiomatic Expressions, &c. ; and a Synopsis of German
Grammar. By L. Pylodet. i8mo. cloth limp. 2s. 6d.

Sonnenschein and Meiklejohn. — the ENGLISH
METHOD OF TEACHING TO READ. By A. Sonnenschein
and J. M. D. Meiklejohn, M.A. Fcap. 8vo.

COMPRISING :

The Nursery Book, containing all the Two-Letter Words in

the Language. id. (Also in Large Type on Sheets for

School Walls. 5J-.)

The First Course, consisting of Short Vowels with Single

Consonants, ^d.

The Second Course, with Combinations and Bridges, con-

sisting of Short Vowels with Double Consonants, ^d.

The Third and Fourth Courses, consisting of Long
Vowels, and all the Double Vowels in the Language. 6d.

" These are admirable books, because they ateconstrtcctcdon a principle^

and that the \simplest principle on which it is possible to learn to read

English. "—S ipECTATOR.

Taylor.—WORDS AND PLACES ; or, Etymological Illus-

trations of History, Ethnology, and Geography. By the Rev.

Isaac Taylor, M.A. Third and cheaper Edition, revised and

compressed. With Maps. Globe 8vo. 6j-.

Already been adopted by many teachers, and prescribed as a text-book in

the Cambridge Higher Exa7ninationsfor IVoincti.
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Thring.—Works by Edward Thring, M.A., Head Master of

Uppingham.

THE ELEMENTS OF GRAMMAR TAUGHT IN ENGLISH,
with Questions. Fourth Edition. i8mo. 2s.

THE CHILD'S GRAMMAR. Being the Substance of "The
Elements of Grammar taught in English," adapted for the Use of

Junior Classes. A New Edition. i8mo. is.

SCHOOL SONGS. A Collection of Songs for Schools. With the

Music arranged for four Voices. Edited by the Rev. E. Thring
and H. Riccius. Folio. 7^-. 6d.

Trench (Archbishop).— HOUSEHOLD BOOK OF ENG-
LISH POETRY. Selected and Arranged, with Notes, by

R. C. Trench, D.D., Archbishop of Dublin. Extra fcap. 8vo.

^s. 6d. Second Edition.
" The Archbishop has cottferred in this delightful vohime an impor-

tant gift on the whole Ejtglish-speaking population of the world.''''—Pall
Mall Gazette.

ON THE STUDY OF WORDS, Lectures addressed (originally)

to the Pupils at the Diocesan Training School, Winchester.

Fom-teenth Edition, revised. Fcap. 8vo. 4^. ^d.

ENGLISH, PAST AND PRESENT. Eighth Edition, revised

and improved. Fcap. 8vo. 4.^. 6<:/.

A SELECT GLOSSARY OF ENGLISPI WORDS, used formerly

in Senses Different from their Present. Fourth Edition, enlarged.

Fcap, 8vo. 4J-. 6^/.

Vaughan (C. M.)— A SPIILLING BOOK OF WORDS
FROM THE POETS. By C. M. Vaughan. i8mo. cloth.

Whitney.—Works by William D. Whitney, Professor of San-

skrit and Instructor in Modern Languages in Yale College ; first

President of the American Philological Association, and hon.

member of the Royal Asiatic Society of Great Britain and Ireland
;

and Correspondent of the Berlin Academy of Sciences.

A COMPENDIOUS GERMAN GRAMMAR. Crown 8vo. 6j-.

A GERMAN READER IN PROSE AND VERSE, with Notes and

Vocabulaiy. Crown 8vo. 7^, 6^/.

Yonge (Charlotte M.)—the abridged book of
GOLDEN DEEDS. A Reading Book for Schools and General

Readers. By the Author of "The Heir of Redclyffe." i8mo.

cloth. IS.

HISTORY.
Freeman (Edward A.)—old -ENGLISH HISTORY.

By Edward A. Freeman, D.C.L., late Fellow of Trinity

College, Oxford. With Five Coloured Maps. Third Edition.

Extra fcap. Svo. half-bound. 6x.
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**Ihave, I hope,'' the author says, *' shown that it is perfectly easy to

teach children, frojn the very first, to distinguish trtie history alike from
legend and from wilful invention, and also to understand the nature of

historical authorities and to lueiiih one state77ient against another. I have

throughout striven to cofinect the history of Englaiid with the general

history of civilized Europe, and I have especially tried to make the

book serzie as an incentive to a more accurate study of historical

geography.''' In the present edition the whole has been carefully revised,

and such improraements as suggested themselves have been introduced.

' • The book indeed is full of instruction and interest to students of all

ages, and he must be a well-ififormed man indeed xvho will not rise from
its pe}-usal with clearer and more accurate ideas of a too much neglected

portion of English History."—SPEcrATOR.

Historical Course for Schools.—Edited by Edward
A. Freeman, D.C.L., late Fellow of Trinity College, Oxford.

The object of the present series is to put forth clear and correct views

of history in simple language, and in the smallest space and cheapest

form in which it could be done. It is meant in the first place for

Schools ; but it is often found that a book for schools proves useful

for other readers as well, and it is hoped that this may be the case

with the little books the first instalment of wliich is now given to

the world. The General Sketch will be followed by a series ot

special histories of particular countries, which will take fc^r granted

the main principles laid down in the General Sketch. In every case

the results of the latest historical research will be given in as simple

a form as may be, and the several numbers of the series will all be

so far under the supervision of the Editor as to secure general ac-

curacy of statement and a general harmony of plan and sentiment
;

but each book will be the original work of its author, who will

be responsible for his own treatment of smaller details.

The first volume is meant to be introductory to the whole course. It

is intended to give, as its name implies, a general sketch of the history of

the civilized world, that is, of Europe, and of the lan'ds which have drawn
their civilization fnvn Europe. Its object is to trace out the general rela-

tions of difjei-ent periods and diffej'Oit countries to one another, tvithoul

going minutely into the aff'airs of any particular country. TJiis is an
object of thefirst importance, for ivithout clear notio)is of genei'al history,

the history of particular countries can fiever be rightly undei^stood. The

narrative extendsfrom the earliest movements of the Aryan peoples, down
to the latest events both on the Eastern and Western Continents. The

book consists of seventeen moderately sized chapters, each chapter bein<i

divided into a number of short numbered paragraphs, each with a title

prefixed clearly indicative of the subject of the paragraph.

I. GENERAL SKETCH OF EUROFEAN HISTORY. Py

Edward A. Freeman, D.C.L. Third Edition. i8mo. cloih.

3^. ed.
^^ It supplies the great zuant of a good foundation for historical teach-

ing. The scheme is an excellent one, and this instalment has been
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Historical Course for Schools

—

contmued.

executed in a ivay thai promises muchfor the vohwies that are yet to

appear.""—Educational Times.

II. HISTORY OF ENGLAND. By Edith Thompson. Fourth
Edition. i8mo. is. 6d.

** Freedom Jrom preptdice, simplicity 0/ style, and accuracy of statement,

are the characteristics of this little volume. It is a. trustworthy text-hook

and likely to be generally serviceable in schools."—Pall Mall Gazette.
" Up07i the whole, this manual is the best sketch of English history for the

use op young people we have yet met with.''^—ATHEN^TiUM.

III. HISTORY OF SCOTLAND. By Margaret Macartiiur.
l8mo. 2s.

"An excellent summary, unimpeachable as to facts, andputting them in

the clearest and most impartial light attainable.^''—Guardian. ''^ Miss
Ma-carthjir has performed her task with admij-able care, clearness, and
fulness, and we have now for the first time a really good School History

of Scotland.''—Educational Times.

IV. HISTORY OF ITALY. By the Rev. W. Hunt, M.A. i8mo.

** Jt possesses the same solid merit as its predecessors . ... the same
scrup7clous care about fidelity i)i details. . . . It is distinguished, too, by

information on art, architectttre, and social politics, in ivhich the writer's

^rasp is seen by thefirmness and clearness of his touch."—Educational
Times.

V. HISTORY OF GERMANY. By J. Sime, M.A. iSmo. 3^.
*'^ A remarkably clear and impressive IIisto7y of Germany. Its great

events are xvisely kept as centralfigures, andthe smaller clients are carefidly

kept, not only subordinate and subservient, but most skilfully tvovcn into

the texture of the historical tapestry presented to the eye."—Standard.
The following will shortly be issued :—

•

FRANCE. By the Rev. J. R. Green, M.A.
GREECE. By J, Annan Bryce, B.A.

AMERICA. By John A. Doyle.

Yonge (Charlotte M.)-~a barallel history of
FRANCE AND ENGLAND : consisting of Outlines and Dates.

By Charlotte M. Yonge, Author of "The Heir of Redclyffe,"
*' Cameos of English History," &c, &c. Oblong 4to. 3^-. ^d.

** We can imagine feiv more really advantageous courses of historical

studyfor a young mind than going carefully and steadily through Miss
Yonge''s excellent little book.""—Educational Times.

CAMEOS FROM ENGLISH HISTORY. From Rollo to Edward
II. By the Author of "The Heir of Redclyffe." Extra fcap.

8vo. Second Edition, enlarged. 3J-. dd.

A book for young people ;ust beyond the elanentary histories ofEngland,
and able to enter in some degree into the real spirit of events, and to be

struck tvith characters and scenes presented in some relief. " Instead of
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Yonge (Charlotte M.)

—

co7itinued.

dry details, we have living pictures, faithful, vivid,'and striking.''''—
Nonconformist.
A Second Series of CAMEOS FROM ENGLISH HISTORY.

The Wars in France. Second Edition. Extra fcap. 8vo. 55-.

" Though mainly intended for young readers, they will, if we mistake

vot, be found very acceptable to those of more mature years, and the

life and reality imparted to the dry bones of history cannot fail to be

attractive to readers of eveiy age."—John Bull.

EUROPEAN HISTORY. Narrated in a Series of Historical Selec-

tions from the Best Authorities. Edited and arranged by E. M.
Sewell and C. M. Yonge. First Series, 1003— 11 54. Third

Edition. Crown 8vo. 6s. Second Series, 1088— 1228. Crown
8vo. 6^. Second Edition.

" We know of scarcely anything which is so likely to raise to a higher

level the average standard of English education.'^—GUARDIAN.

DIVINITY.
*J^ For other Works by these Authors, see Theological Catalogue.

Abbott (Rev. E. A.)—BIBLE LESSONS. By the Rev.

E. A. A15R0TT, M.A., Head Master of the City of London School.

Second Edition. Crown 8vo. 4^. 6d.

*' Wise, suggestive, and reallyprofound initiation into religious thought.''

—Guardian. *^ I think nobody cmild read the?n without being both the

better for the^n himself, and being also able to see how this difficult duty op

imparting a sound religimis education may be efected."—BlSKOY OF St.

David's at Abergwilly.

Arnold.— A BIBLE-READING FOR SCHOOLS. The
Great Prophecy of Israel's Restoration (Isaiah, Chapters

40—66). Arranged and Edited for Young Learners. By Mat-
thew Arnold, D.C.L., formerly Professor of Poetry in the

University of Oxford, and Fellow of Oriel. Third Edition. iSmo.

cloth. IS.

** There can be no doubt that it idll be found excellently caliulattxi to

further instruction in Biblical literature in any school into which it may

be introduced ; and we can safely say that whatn'er school uses the book,

it will enable its pupils to understand Isaiah, a great advantage compared

zvith other establishments which do not avail themselves of it.''—TiMES.

''Mr. Arnold has done the greatest possible service to the public. We tie7'er

read any translation of Isaiah tvhich interfered so little w'lth the musical

rhythtn and associations of our English Bible translation, while doing

so much to display the missing links in the connection of the parts.'"—
Spectator.

Golden Treasury Psalter.—students' Edition. Being an

Edition of "The Psalms Chronologically Arranged, by Four

Friends," with briefer Notes. i8mo. 3^. 6d.
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Hardwick.

—

a HISTORY OF THE CHRISTIAN CHURCH.
Middle Age. Yxova Gregory the Great to* the Excommunication
of Luther. Edited by William Stubbs, M.A., Regius Professor

of Modern History in the University of Oxford. With Four Maps
constructed for this work by A, Keith Johnston. Third Edition.
Crown 8vo. ioj-. ()d.

For this edition Professor Stubbs has carefully revised both text and
notes, making such correctio7ts of facts, dates, and the like as the results

of recent research warrant. The doctrinal, historical, and generally
speculative views of the late aicthor have been preserved intact. ^^ As a
manual for the student of ecclesiastical history in the Middle Ages,%ve
know no English work which can be compared to Mr. Hardwick's
book.

"

—Guardian,
A HISTORY OF THE CHRISTIAN CHURCH DURING THE

REFORMATION. By Archdeacon Hardwick. Third
Edition. Edited by Professor Stubbs. Crown 8vo. los. 6d.

Maclear.—Works by the Rev. G. F. MACLEAR, D.D., Head
Master of King's College School.

A CLASS-BOOK OF OLD TESTAMENT HISTORY. Eighth
Edition, with Four Maps. i8mo. cloth. 4J-. 6d.

" A careful and elaborate though brief compendium of all that modern
reseaj'ch has donefor the illustration of the Old Testament. We knoiv

of no work which contains so much important information in so small
a compass."—BRITISH QUARTERLY Review.
A CLASS-BOOK OF NEW TESTAMENT HISTORY, including

the Connexion of the Old and New Testament. With Four Maps.
Fifth Edition. i8mo. cloth. 5^-, 6d.

"A singularly clear a?id orderly arrangcfjient of tlie Sacred Story.

Ills 7vork is solidly and co7)ipletely done,"—AtheN/EUM.
A SHILLING BOOK OF OLD TESTAMENT HISTORY,

for National and Elementary Schools. With Map. l8mo.
cloth. New Edition,

A SHILLING BOOK OF NEW TESTAMENT HISTORY,
for National and Elementary Schools, With Map. i8mo,
cloth. New Edition,

These works have been carefully abridged from the author's larger
manuals.

CLASS-BOOK OF THE CATECHISM OF THE CHURCPI OF
ENGLAND. Third and Cheaper Edition. i8mo. cloth, i^. 6d.

'

' It is indeed tfie work of a scfiolar and divine, and as such, tJiougfi

extrejuely simple, it is also extremely instructive. Tfiere are few clergy-

men who would not find it useful in preparing candidates for Confir-
mation ; and tha-e are not a fezo wJio would find it useful to tJiemselves

as well"—Literary Churchman.
A FIRST CLASS-BOOK OF THE CATECHISM OF THE

CPIURCH OF ENGLAND, with Scripture Proofs, for Junior
Classes and Schools. iSmo. 6^/, New Edition.



30 EDUCATIONAL BOOKS.

Maclear

—

continued.

A MANUAL OF INSTRUCTION FOR CONFIRMATION AND
FIRST COMMUNION. With Prayers and Devotions. Royal
32mo. cloth extra, red edges. 2s.

'* Ji IS earnest, orthodox, and affectiojiate in tone. The form of self'

examination is particularly goody—John Bull.

Maurice.—THE LORD'S PRAYER, THE CREED, AND
THE COMMANDMENTS. A Manual for Parents and School-

masters. To which is added the Order of the Scriptures. By the

Rev. F. Denison Maurice, M.A., Professor of Moral Philosophy

in the University of Cambridge. i8mo. cloth limp. \s.

Procter.

—

a history of the book of common
PRAYER, with a Rationale of its Offices. By Francis Procter,
M.A. Eleventh Edition, revised and enlarged. Crown 8vo.

IOJ-. dd.
^^ We admire the author''s diligence, and bear willing testimony to the

extent and acctiracy of his reading. The origin of every part of the

Prayer Book has been diligently in7.'estigated, and there arefciv questions

of facts connected tuith it 7vhich are not either sufficiently explained, or so

referred to that persons interested may work out the truth for themselves.''''

—ATHEN/EUM.

Procter and Maclear.—an elementary intro-
duction TO THE BOOK OF COMMON PRAYER.
Re-arranged and supplemented by an Explanation of the Morning
and Evening Prayer and the Litany, By the Rev. F. Procter
and the Rev, G. F, Maclear. New Edition. i8mo. 2s. 6d.

Psalms of David Chronologically Arranged. By
Four Friends. An Amended Version, with Historical

Introduction and Explanatory Notes. Second and Cheaper
Edition, with Additions and Corrections, Crown 8vo. Sj-, 6d.

** 0>icof the 7?iost i)istrtictive a)id valuable books that has been published

for many years.
'

'— Spectator .

Ramsay.—the CATECHISER'S manual; or, the Church
Catechism Illustrated and Explained, for the use of Clergymen,
Schoolmasters, and Teachers. By the Rev. Arthur Ramsay,
M.A. Second Edition. iSmo. is. 6d.

A clear explanation of the Catechism, by way of Question aiui Ariswer.
" This is by far the best Manual on the Catechism' we have met 7vithy

—English Journal of Education.

Simpson.

—

an epitome of the history OF THE
CHRISTIAN CHURCH. By William Simpson, M.A.
Fifth Edition. Fcap, 8vo. 3^. bd.

Swainson.— A HANDBOOK to BUTLER'S ANALOGY, By
e, A. Swainson, D.D., Canon of Chichester. Crown 8vo. is. 6d.
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Trench.

—

synonyms OF the new TESTAMENT. By
R. Chenevix Trench, D.D., Archbishop of Dublin. New
Edition, enlarged. 8vo. cloth. \2s.

Seventh Edition, car^fllIly revised, and with a considerable number of
new synonyms added. Appended is an Index to the Synonyms, and an
Index to other words alluded to in the work. '

' He is a guide in this de-
partment of knotvledge to whom his readers may intrust themselves with
cotifidence. His sober jiidgment and sound sense are barriers against the
misleading influence oj arbitrary hypotheses.''—Ktyiy.'^mxs^.

WestCOtt.—Works by BROOKE FOSS WESTCOTT, B.D.,
Canon of Peterborough,

A GENERAL SURVEY OF THE HISTORY OF THE
CANON OF THE NEW TESTAMENT DURING THE
FIRST FOUR CENTURIES. Third Edition, revised. Crown
8vo. 10s, dd.

" Theological students, and not they only, but the general public^ owe a
deep debt op gratitude to Mr. Westcott for bringing this subject fairly
before them in this candid and comprehensive essay Asa theo-
logical work it is at once perfectly fair and impartial, and imbued with
a thoroughly religious spirit; and as a manual it exhibits, in a lucid
fo7'm and in a narroiv compass, the results of extensive research and
accurate thought. We cordially recommend it."—Saturday Review.
INTRODUCTION TO THE STUDY OF THE FOUR GOSPELS.

Fourth Edition. Crown 8vo, los. 6d.
^^ To lea?-ning and accuracy which commands respect and confidence,

he unites what are not always to befound in union zaith these qualities, the
no less valuablefacidties of lucid arrangement and graceful and facile ex-
pression.''—London Quarterly Review.
THE BIBLE IN THE CHURCH. A Popular Account of the

Collection and Reception of the Floly Scriptures in the Christian
Churches. New Edition. 18 mo. cloth. 4.5-. 6^/.

^' We would recommend rccry one who loz'es and studies the Bible to read
and ponder this exquisite little book. Mr. Westcott's account of the
' Canon' is true history in its highest sense?'—Literary Churchman.
THE GOSPEL OF THE RESURRECTION. Thoughts on its

Relation to Reason and History. New Edition. Fcap. 8vo.
4.r. 6d

Wilson.—THE BIBLE STUDENT'S GUIDE to the more Correct
Understanding of the English translation of the Old Testament,
by reference to the Original Hebrew. By William Wilson,
D.D., Canon of Winchester, late Fellow of Queen's College,
Oxford. Second Edition, carefully Revised. 4to. cloth, 25^.

^' For all earnest students of the Old Testament Scriptures it is a
most valuable Manual. Its arrangement is so simple that those who
possess only their mother-tongue, if they will take a little pains, may
employ it ivith great profit."—Nonconformist.
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Yonge (Charlotte M.)~scripture readings for
SCHOOLS AND FAMILIES. By Charlotte M. Yonge,
Author of " The Heir of Redely ffe." First Series. Genesis

to Deuteronomy. Globe 8vo. is. 6d. With Comments. Second
Edition, ^s. dd.

Second Series. From Joshua to Solomon. Extra fcap.

8vo. is. 6d. With Comments, 3^-. 6d.

Third Series, 'The Kings and the Prophets. Extra fcap.

8vo. IS. 6d. With Comments, y. 6d.

Actual ficed has led the author to endeavou?' to prepare a reading book con-

venient for study tuith children, containifig the very words of the Bible, xvith

only a frji) expedient omissions, and arranged in Lessons of such length as by

experience she hasfound to suit zuith children's ordinarypower of accurate

attentive interest. The verse form has been retained, because of its con-

veniencefor children reading in class, and as more resembling their Bibles ;

hut the poetical poitions have been given in their lines. When Psahns or

portionsfrom the P?'ophets illustrate orfall in with the narrative they are

given in their chronological sequence. The Scripture portion, zuith a very

fav notes explanatory of mere words, is bound up apart, to be used by

children, while the same is also supplied with a brief comment, the purpose

of lijhich is either to assist the teacher in explaining the lesson, or to be

used by more advancedyotiugpeople to zuhom it may not be possible to give

access to the authorities whence it has been taken. Professor Huxley, at a

meeting of the London School Board, particularly mentioned the selection

made by Miss Yonge as an example of hoiv selections might be made from

the Biblefor School Reading. .S"^^ Times, March 30, 187 1,

London: r. crAV. sons, and t.wlok, rKiNiKics.
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