

i

MONTEREY, CALL

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
MAINTAINING THE INTEGRITY OP

DISTRIBUTED DATABASE

by

Pahad A. Al-Lahaidan

June 1982

Thesis Advisor: Norman P. Schneidewind

Approved for public release; distribution unlimited

T20^

SECURITY CLASSIFICATION Of THIS RAPE (WPtmt Data Bpjgepjj

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

\ STTSWt numII- a. OOVT ACCESSION NO 1. »tCl»HNT-S CATALOG NUMBER

4. TITLE (and Subitum)

Maintaining the Integrity of Distributed
Database

». TYPE OF REPORT * PERIOO COVEREO
Master's Thesis
June 1982

S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR, •>

Pahad A. Al-Lahaidan
• CONTRACT OR GRANT NLMBERfi

» PFPFORMING ORGANIZATION NAME ANO AOORBSS

Naval Postgraduate School
Monterey, California 9^940

1 I CONTROLLING 9MICI NAME ANO AOORESS

Naval Postgraduate School
Monterey, California 93940

tt. MONITORING AoInCY NAME * AOORESSfl/ dtlframnt MM CamrelKn* OI«e«)

to. program element, project task
AREA A WORK UNIT NUMBERS

12. RERORT DATE

June 1982
IS. NUMBER OF PAGES

107
IS. SECURITY CLASS, (at thla r.por,

ISa. OECLASSIFICATION/OOWNGRAOING
SCHEDULE

l«. DISTRIBUTION STATEMENT (ml thla *•»•*«)

Approved for public release; distribution unlimited

• 7. DISTRIBUTION STATEMENT (ol thm a*atta<t aniarad In Black 30, II dtllmtmnl *om *a»ari)

IB. SURRLEMENTARY NOTES

tt. KEY WOROS (Continual m t**+f atda II ntamatr •** Idmntltf «r »!•«* hurppt)

Transaction handling methods
Classes of data
Distributed database systems
Distributed database integrity

Data independence
Recovery techniques
Distributed semaphore method
Database computer

20. ABSTRACT |

C<mtln— am ra*maa »<<*• II nacaaaarr am* tdamtitf »r »!•«* PMP*P»i

The overall objective for distributed databases is that of
sharing of data among several nodes. Increasing the number of
users and the size of communication are two factors associated
with distributed database systems. These factors, with others
such as hardware, software and operations, are major factors
which could originate threats to the distributed database
integrity. Some discussion about these factors is presented.

DO i jan*7J 1473 EDITION or I NOV • IS OBSOLETE
S/N 0102-014- «S01

SECURITY CLASSIFICATION OR THIS RAOE <••*•" Omtm Kntfd)

I

Maintaining the data integrity has become a critical
problem in distributed database fields. The problem requires
a clear and precise view; it needs an early determination for
meeting user requirements for integrity, since each organiza-
tion has its own priorities.

This thesis examines integrity in general and presents
some considerations and strategies to be spaced through
different system levels, such as design, management, and
operation and communication. The main idea of such approaches
is to avoid the threats, or to reduce the risks.

DD . Forr^ 1473

S/ N 0102-014-6601 n »«cu«i»* clamiucatiow or *•• **otr»»«" o*

Approved for public release; distribution unlimited

Maintaining the Integrity of Distributed Database

by

Fahad A. Al-Lahaidan
Lieutenant, Royal Saudi Naval Forces

B.S.S.E., U.P.M. Dhahran, Saudi Arabia, 1978

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June, 1982

AL,F
- 9394o

CH°0L

ABSTRACT

The overall objective for distributed databases is that of

sharing of data among several nodes. Increasing the number of

users and the size of communication are two factors associated

with distributed database systems. These factors, with others

such as hardware, software and operations, are major factors

which could originate threats to the distributed database

integrity. Some discussion about these factors is presented.

Maintaining the data integrity has become a critical

problem in distributed database fields. The problem requires

a clear and precise view; it needs an early determination for

meeting user requirements for integrity, since each organiza-

tion has its own priorities.

This thesis examines integrity in general and presents

some considerations and strategies to be spaced through

different system levels, such as design, management, and

operation and communication. The main idea of such approaches

is to avoid the threats, or to reduce the risks.

TABLE OF CONTENTS

I. INTRODUCTION 11

II. NATURE OF THE PROBLEM 13

A. BACKGROUND 13

1. Preliminary Definitions 13

2. Transactions 14

a. Types of Transactions 14

(1) An Inquiry 14

(2) An Update l 2*

b. Transaction Handling Methods 14

(1) Application Job Chaining 15

(2) Transparent Access 15

3. Classes of Data 15

a. Class 1

b. Class 2

c. Class 3

Unchanging Data 15

Simple Update Data 16

Nonrepeatable Independent

Update Data 16

d. Class 4: Time-Critical Update Data — 16

e. Class 5: An Action Triggered Update

—

16

4. Distributed Database Systems 17

a. Fully Redundant DDB 17

b. Partially Redundant DDB 17

c. Partitioned DDB 17

B. SCOPE OF DISTRIBUTED DATABASE INTEGRITY 21

III. DISTRIBUTED DATABASE INTEGRITY THREATS 2 3

A. HARDWARE MALFUNCTION 2h

B. SOFTWARE MALFUNCTION 25

1. During Specification 26

2. In Design 26

3. In Implementation 26

4. In Maintenance 26

C. OPERATIONAL ERRORS 27

1. Lost Operation 27

2. Inconsistency 27

D. COMMUNICATION FAILURES 27

E. USER ERRORS 28

IV. MAINTAINING THE INTEGRITY OF A DISTRIBUTED

DATABASE 30

A. DESIGN CONSIDERATIONS 31

1. Efficient Hardware 32

a. Database Computer 32

b. Integrity of DDB in Database

Computers 35

2. Effective Communication Systems 36

a. Computer Network Message Techniques - 37

b. Network Management 37

c. Integrity of DDB in Computer Networks 39

(1) Access Control 39

(2) Memory Control ^°

(3) Integrity Control ^0

6

3. Software Reliability 40

a. Correctness 4l

b. Robustness 4l

(1) Error Detection 42

(2) Hardware Reconfiguration 42

(3) Recovery 44

(4) Software Reconfiguration 44

4. Reliable Software and DDB Integrity 44

a. Distributed Software 44

b. DDB Integrity 45

(1) Integrity Assertions 45

(2) Language of Integrity 46

(3) Monitoring of Integrity 46

c. Summary 47

B. MANAGEMENT CONSIDERATIONS 48

1. Decentralized Authorization 48

a. Authorization Functions 48

b. Decentralized Authorization Model 48

c. DDB Integrity and Decentralized

Authorization 49

2. Data Independence 50

a. Static Data Independence 50

b. Dynamic Data Independence 51

c. Impact of Data Independence on

DDB Integrity 52

C. OPERATIONAL STRATEGIES 53

1. User Error Detection and Avoidance 53

a. User Error Detection 5^

b. User Error Avoidance 5^

(1) First Approach 55

(2) Second Approach 56

2. Recovery Techniques 5o

a. Recovery Elements 56

(1) Database Dump 57

(2) Logs (Journals) 57

(3) Database Log 57

(4) Log Control Data 57

(5) Checkpoint 57

b. Distributed Database Recovery 57

(1) Update of Partitioned Data 58

(2) Update of Redundant Data 6°

3. Concurrency Control Mechanisms 60

a. Definitions 6l

b. Types of Mechanisms 62

(1) Distributed Locking Mechanism 62

(2) Conflict Driven Restart Mechanism

(3) Majority Consensus Mechanism °7

D. COMMUNICATION STRATEGIES 6 9

1. Distributed Loop Database System (DLDBS) — ^9

a. Definition 7°

b. Implementation
™

(1) Loop Request Nodes (LRNS) 70

(2) Loop Data Nodes (LDNS) 70

c. Operation of the Algorithm 71

d. DDB Integrity Using DLDBS 72

(1) Communication Link Failures 72

(2) Site Crashes 72

2. Distributed Semaphore Method 73

a. Definition 73

b. Implementation 73

(1) Assumptions 7^

(2) Operations Implementation 75

c. Operation of the Method 76

d. DDB Integrity Using Distributed 76

Semaphore Method

V. CONCLUSIONS 78

LIST OP REFERENCES 80

APPENDIX A

APPENDIX B

APPENDIX C

SOFTWARE ERRORS IN REAL-TIME SOFTWARE 83

MODEL FOR DECENTRALIZED AUTHORIZATION 86

RECOVERY METHODS 102

INITIAL DISTRIBUTION LIST 107

LIST OF FIGURES

FIGURE la FULLY REDUNDANT DDB 18

FIGURE lb PARTIALLY REDUNDANT DDB 19

FIGURE lc PARTITIONED DDB 20

FIGURE 2 STEPS OF FAULT-TOLERANT PROCESSING 43

FIGURE 3 DEADLOCK 6 4

FIGURE 4 DEADLOCK GRAPH FOR FIGURE 3 65

10

I. INTRODUCTION

Distributed database technology is a comparatively

recent development within the overall database field. The

greatest advantages of distributed database systems are:

Efficiency of local processing for most operations.

Data sharing between different computers (nodes) in

the distributed system.

However, inherent in the distributed database system are

the basic problems of a centralized database (e.g., security,

concurrency control and integrity). These problems are more

critical in the distributed database environment due to

several factors such as the large domain of users, the

multitude of interactions possible between programs of

heterogenous computers, and the multiple copies of a database

in the different sites.

Preserving the integrity of a distributed database is not

an easy task, particularly when all or part of the database is

replicated at different nodes. An update of such a database

is subject to a number of problems concerned with coordinating

a series of updates entered at different sites and insuring cor-

rect entry of updates into all copies of the database. Reliable

communication between such nodes is vital so that no entry or

communication message (broadcast, acknowledge) can ever be

lost

.

11

This thesis discusses the problem of database integrity

from a broad perspective. Such a problem needs a clear view

for understanding the means and causes which threaten

distributed database integrity. Approaches for resolving

this problem are examined with respect to data classes,

database configurations and systems applications.

This thesis is divided into two main parts. Part one

consists of the introduction and the nature of the problem.

It sets the scene by explaining the nature of the problem and

gives a background for aspects related to distributed database

integrity. These aspects define the scope of such integrity

and serve as a terminology reference for the following

chapters. Chapter III, Distributed Database Integrity Threats,

is a brief study of some of the major factors which threaten

data integrity. These include hardware and software

malfunction, operational and user errors, and communications

failures

.

Part two consists of Chapter IV which contains a detailed

discussion of the different methods and approaches which have

been proposed for maintaining the integrity of distributed

database systems. These include: design considerations,

management considerations, operations strategies and

communication strategies. This part ends with Chapter V

which contains conclusions reached by the author.

12

II. NATURE OF THE PROBLEM

A prerequisite to solving a problem is a clear under-

standing of the problem itself; the integrity of distributed

database is no exception. This section will present a

background and some of the characteristics of this problem.

A. BACKGROUND

1. Preliminary Definitions

Database can be defined as a collection of inter-

related data items that are processed by one or more

applications programs. These programs which control the

data contained in the database are called a Database Manage-

ment System (DBMS) [Ref . 1] . This system is composed of

several internal functional areas, e.g., a record management,

a lock scheduling and recovery control, allocation of data to

transaction, and insurance of data sharing and recovery over

the database. A Distributed Database Management System (DDBMS)

is a collection of sets of data in a network. Each site in

the network is a computer running a local DBMS. The network

consists of two or more nodes, interconnected with a computer-

to-computer communication system. Another important term is

the Database Administrator (DBA). This refers to the person

(or group of people) responsible for overall control of the

database system, using a number of utility programs to help

with database control. Examples of utility programs include

13

loading routines, data dictionary and recovery routines.

Users interact with DDBMS by entering transactions (from

different sites); this means a program or on-line query

which accesses the database.

2 . Transactions

a. Types of Transactions

A request to a DBMS or DDBMS system can take

any one of the following forms:

(1) An inquiry . This type of request does not

update the directory; or, the database processing is required

in order to access the directory and the database. An

example is read only.

(2) An update . This type of request changes

the status of the database but does not necessarily require

that the directory contents be modified. Processing is

required for accessing the directory, possibly changing the

contents of the. directory, and for changing the contents of the

database. Examples of this type include read, write, change,

delete, and file manipulation.

The first type of request is the simplest

form because it does not imply any change in database status;

the other types include changes in the status of the database.

b. Transaction Handling Methods

The way a DBMS or DDBMS handles any type of

transaction depends on the characteristics of the distributed

system. Davenport [Ref. 2] defined some ways of handling

transactions by a distributed database system:

14

(1) Application job chaining . The transaction

is split into a number of components with each component

executing application programs and accessing data within a

database section within the confines of a single computing

facility (node). When one component finishes, it passes

intermediate results to and activates the next component in

a remote computing facility. When all components have

completed, the final results are transmitted back to the

computing facility where execution of the first component

took place. Those results are passed back to the terminal

that originated the transaction. Application job chaining

can be summarised as moving the process to the data.

(2) Transparent access . The transaction

executes application programs within one computing facility

but accesses data within database sections which are held

on remote computing facilities. Transparent access can be

summarised as moving the data to the process. The rate of

change in database depends on the classes of data.

3. Classes of Data

A DDBMS is concerned with the types of data

(residing in each node). One criteria for differentiating

between data is the update mode. Different types of data

have different types of updating. There are five classes

of data [Ref . 31

•

a. Class 1: Unchanging Data

This is data which is never or only infrequently

changed, e.g., town names and streets; historical information

15

b. Class 2: Simple Update Data

This is data which is updated by simple replace-

ment, such data which is performed twice with no harm done,

or data which is upgraded by adding new and separate records,

e.g., airline timetables; price lists.

c. Class 3- Nonrepeatable Independent Update Data

This is data with an update which cannot be

applied twice, but which is independent of any other update.

The update can take place at any time (within limits), e.g.,

bank account balances.

d. Class 4: Time-Critical Update Data

If this type of update is reapplied at different

times (e.g., after a restart), its effect may not be the same

Its effect is tied to other events or to other updates which

occur independently, e.g., airline reservations.

e. Class 5' An Action Triggered Update

When this data is updated it may trigger the

updating of different data or other actions in a different

machine, e.g., an inventory balance with automatic recording

done on a different machine if the balance falls below a

certain level.

A DDBMS is concerned about transaction types,

transaction methods, and classes of data. It is also

concerned about the configuration of data distribution

between sites.

16

4. Distributed Database Systems CDDBS)

A distributed database (DDB) can be implemented by

storing some subset of the entities that make up the database

at each site. Reference 4 gave the following formula to

describe data distribution:

S=n

S-l

The formula is a distributed implementation of database where

E denotes the set of entities stored at Site S; DB is the
s '

set of all entities that make up the database.

There are many ways in which the entities that comprise

the database may be divided among the various sites . They

can be characterized as follows

:

a. Fully Redundant DDB

Every entitiy is stored at every site. See

Figure la on page 18.

b. Partially Redundant DDB

Some entities are stored at more than one site.

See Figure lb on page 19.

c. Partitioned DDB.

No entity is stored at more than one site. See

Figure lc on page 20.

Each type of organization has its advantages, depending on

the nature of the database and its use.

"'"An entity is the unit of data which is controlled by DBMS

17

Site #1

Site #3

Figure la

FULLY REDUNDANT DDB

18

Site #1

Contains
Site #1
Plus Part
of Site #3

TOTAL
DATA
BASE

Contains
Total
Data
Base

Site #3
Figure lb

PARTIALLY REDUNDANT DDB

19

Site #1

TOTAL
DATA
BASE

Site #3
Figure lc

PARTITIONED DDB

20

Certain areas of the background have little or no

concern with integrity problems. These would include Class 1

in Classes of Data, and an inquiry (read only) transaction

in partitioned DDB. Other areas are within the integrity

scope.

B. SCOPE OP DISTRIBUTED DATABASE INTEGRITY

The scope of data integrity can be as wide and as com-

plex as the database system is designed in order to protect

its status. It can range from enforcing a simple semantic

constraint on data entry to the use of sophisticated

hardware (e.g., database machines), software, and automatic

recovery techniques. Techniques also include communication

strategies and concurrent control mechanisms.

The range of the scope is based on the class of the data,

the type and method of transactions, and the configuration

of data distribution.

There are many points of view in defining data integrity.

From a DBMS viewpoint, integrity could be defined as the

ability of DBMS to preserve the status of the data elements

2
in the database from any threats leading it to an inconsis-

tent state. The generality of this view includes other

related terms, e.g., consistency of database. Maintaining

There are different types of semantic constraints.
Generally, it can be defined as an arrangement of values
beyond which the input data should not go.

2
Discussion of the types of threats is in Chapter III

21

the integrity of the database can be viewed as protecting

the data against invalid alteration or destruction.

Integrity is thus distinct from security, although the

two issues are closely allied. Indeed the same mechanism

may be used to achieve the preservation of both, at least to

some extent. Reference 5 presents examples for such

mechanisms. In discussing the integrity of distributed data-

bases it is helpful to divide the previous view of data

integrity into the global view and the local view. The

first view is concerned with the integrity of the whole

system (global); the second view is concerned with the

integrity of the system in the site (node) level (local).

In this thesis the assumption of the approach is the global

DDBMS with heterogeneous or homogeneous local DDBMS.

22

III. DISTRIBUTED DATABASE INTEGRITY THREATS

The purpose of this chapter is to identify the threats

which are likely to affect consistency of database. These

threats could change information, destroy the whole database

or a subset, or give an inaccurate state of the database.

Studying these threats and their origins assists the

designer in planning for countermeasures to decrease the

probability of threats occuring, or to decrease the impact

of the threat should it occur. Such study needs to be taken

in a general view so that the developed solutions will be

easy to adopt for various systems in different situations.

Some solutions have been proposed [Ref . 6 and Ref . 7]

.

However, they focus on a very limited area of the whole

problem or are limited to a special type of database.

This chapter will examine the distributed database threats

in order to see which is most and least critical for data

integrity. Chapter IV will discuss different practical tech-

niques which can be used to maintain the distributed database

integrity. The importance of these techniques varies from

one DDBMS to another according to its application.

DDBS integrity is threatened by several factors including:

Hardware malfunction. This can result in failure of

protection activities, disabling the memory read/write protec-

tive devices, and unknowing interruption of priviledged mode

processing.

23

Software errors. DDBMS application programs may

contain undetermined errors which will arise over a period

of time. These errors could also come from OS or utility

programs %

Operational problems. These happen during the

transaction handling and data manipulation. For example,

concurrency conflicts can induce improper sequences of

operations and lead to inconsistencies.

Communication failures* These result from abnormal

conditions in the distributed environment and may lead to

site crashes. A site crash in any node may prevent the

completion of database updating in other nodes.

User errors. These result from human interaction

with the system, e.g., user update errors or a bad entry

which introduces inconsistent data elements.

Other indirect errors may contribute to the DDBS threats.

These include physical security of the computer system and

the quality of DP management. Other than management and

human errors, the DDBMS is responsible for realizing these

problems and for ensuring the suitable strategy for resolving

them. The remainder of this chapter will describe and analyze

the above problems.

A. HARDWARE MALFUNCTION

Hardware failures can cause unintentional relevation,

destruction, or scrambling of data elements in the database.

24

These failures can result from device deficiencies or from

worn out parts. The limitation of using conventional

computer architecture for database application increases

the possibility of failures. Current computers are well-

suited to scientific and traditional business applications.

However, they are not well-suited to information storage and

retrieval. Information storage and retrieval applications

require addressing by content; while conventional computers

are designed for referencing by physical address [Ref . 8]

.

This mismatch between conventional computer architecture and

application requirements for information retrieval introduces

inefficiencies in both the processor and storage areas. Data

access tends to become computer-bound and tables required to

locate data can consume more storage than the data itself.

B. SOFTWARE MALFUNCTION

The difference between intended and actual behavior is

caused by "bugs" (program errors). Most large software

systems are error-prone; these errors are supposed to be

corrected during debugging. However, debugging is often

considered a problem for three reasons: (1) the process

is costly (takes too much effort); (2) after debugging the

software still suffers from bugs; and (3) when the software

is later modified, bugs turn up in completely unexpected

places. Software faults account for approximately 20 percent

of all failures. An analysis of software errors and their

25

causes is discussed thoroughly by Endres [Ref . 9] and by

Schneidewind and Hoffman [Ref. 10]

.

Failures may be introduced into software at any stage of

its development. These may include the following:

1. During Specification

The analyst may omit to specify what a program should

do under certain circumstances. The program may either do

the wrong thing, or not do anything at all.

2

.

In Design

The processing algorithms chosen to do a particular

job may be wrong in that they fail to reflect real life.

3. In Implementation

Through carelessness, misunderstanding, or lack of

testing the program may not code what is required.

4

.

In Maintenance

This is the most critical stage because while

enhancing the program or correcting new faults, new faults

may be introduced as unexpected side effects.

Errors in any level of DDBMS software or in the lower

layers of software systems could change the status of

database to an inconsistent state. The difficulty here is

that all of this can take place without notifying DDBMS.

Types of real-time software errors are given in Appendix A.

According to Lorin [Ref. 11] , the software layers which
usually come underneath the DDBMS and DBMS are the extended OS
and the kernel.

26

C. OPERATIONAL ERRORS

Inconsistency in a database may occur temporarily as an

inevitable consequence of an operation on the database.

For example, if a data element is moved from membership of

one set to another, there will be a brief period when it is

attached to both or to neither. Conflict may occur in

concurrent access to distributed database such as two users

both attempting to modify the same data element.

Each modification of an entity (or data element) creates

a new version of that entity. There exist two types of

concurrency conflicts which can appear when actions simultan-

eously create new versions:

1. Lost Operation

This occurs when the new version of an entity is

created by a transaction which utilizes obsolete versions

of entities to produce the new one.

2. Inconsistency

Inconsistency appears when an integrity constraint

is violated.

Simultaneous executions of transactions must be scheduled

in order to prevent lost operations and inconsistency.

D. COMMUNICATION FAILURES

If each node in the distributed system network has a

(direct/indirect) path to every other node (partitioned),

communication link failures do not create any difficulty

27

since the partition which has a majority of nodes in the

network can still continue operating and treats the nodes

in the other partitions the same as if in crashed sites.

This is a special case if only one partition is allowed to

operate; but generally inconsistency among databases in

different partitions may occur.

It is necessary to guarantee transaction atomicity in

order to be sure that either all the transactions updates are

committed in all the sites, or none of the updates are

committed. For this purpose, some approaches have been

proposed, e.g., two-step commitment protocol [Ref. 12].

Such approaches depend heavily on reliable communication

between nodes (sites).

Communication link failures and site crashes are

fundamental problems in distributed processing and local

networking.

E. USER ERRORS

There are different types of errors in user-computer

interface. This difference comes from several factors such

as error revising, error origin, or unethical access. The

degree of destruction in data is dependent on the type of

data class. The actual causes of the error may come from

unspecialized user or unintentional entry (bad entry). The

upgrading in the degree of access authorization in distribu-

ted database environment tends to be less strict in the

28

ordinary database if there is conflict between the global

and local access authorized administrations.

To prevent such errors it is desirable that tools be

supplied to DDBMS in order to detect, investigate, and

correct or avoid user errors; and to improve the mechanism

for access authorization.

29

IV. MAINTAINING THE INTEGRITY OF DISTRIBUTED DATABASE

Distributed database systems pose problems of integrity

much greater than those of centralized database systems, due

to the multitude of interactions betwen different application

programs, from heterogeneous nodes and concurrent updating

the distributed database.

These programs must be prevented from interfering with

one another. In addition, when updates occur in one site of

the redundant DDB, this update should be read directly to the

other copies in order to prevent inconsistency of database.

Also, in the absence of effective communication, a crash site

in one of the local databases may prevent the continuity of

distributed database operations. Crash site or communication

link failures need to be handled in such a fashion that

gracefully degraded service is permitted. Moreover, the

problems of long transmission delay and narrow bandwidth of

most communications networks exists in distributed systems.

There is considerable research containing reasonable

solutions to some general problems of database systems; for

example: database integrity, concurrency control and recovery

techniques. Such approaches frequently work poorly in a

Due to the internal system delays that result from
secondary storage, main memory and GPU characteristics [Ref.131

30

distributed environment because of the significant differences

in hardware and software configuration.

Maintaining the integrity of DDB is not an easy task.

In order to reach such an objective, careful, revised

planning for this should start from the early stage of imple-

mentation of the distributed system through the system

maintenance stage. Of course there is a limit to the extent

to which this objective can be reached; in particular, human

mistakes. Apart from limitations of this or a similar

nature, however, it should be possible to maintain a high

degree of integrity in distributed database by implementing

integrated planning.

This chapter contains some considerations and strategies

which need to be taken in account in planning for the integrity

of distributed database.

A. DESIGN CONSIDERATION

In designing distributed database, integrity issues

should be the prime objective. The following factors need

to be considered in order to achieve the first stage of the

objective:

An efficient hardware: special machines to suit

database applications (database computer).

The mistakes that can be made by the human operator
include errors such as using the wrong versions of programs
or damaging data volumes by careless handling.

31

An effective network communication: to handle the

data distribution gracefully.

Reliable software: to cope with abnormal situations,

over which the software designer has little or no

control.

1. Efficient Hardware

In Chapter II it was seen that the limitation of

using conventional computer architecture for database appli-

cation is one of the hardware malfunction causes which

threaten the integrity of database. There are different

approaches to computer architectures which are more efficient

for information storage and retrieval applications, specifi-

cally in database computers,

a. Database Computer

The database computer can be incorporated into

a system in one of four ways [Ref . 14]

:

Back-end processor for a host.

Intelligent peripheral control unit.

Storage hierarchy.

Network node.

Each of these approaches is independent and a system may

include more than one of the architectures in its list.

Each will be considered separately.

The back-end processor approach is usually

though of as a master-slave configuration where the host

passes high level access requests to the back-end. The

32

back-end is a general purpose computer which performs all

of the database activities including access validation,

storage management, update lockout, response formatting, and

I/O operations. When the back-end processor has completed

the access, it passes the response back to the host. The

communication link between the host and back-end is usually

an I/O channel, but it may be a telecommunication link.

The back-end processor can provide several

benefits to the local database. Hardware specialization is

possible, for example, leading to more efficient data and

interrupt handling on a dedicated basis. Long register

lengths, high speed floating, point, double-precision,

multiplication and division hardware can be omitted.

Furthermore, software specialization can reduce the overhead

in handling interrupts and task switching.

The intelligent peripheral control unit approach

moves out the highly repetitive aspects of data access to a

mass storage controller in order to avoid the high overhead

of the general purpose host hardware and software. The

basic functions of device scheduling, head positioning, data

recovery, searching, sorting, and error correction are

implemented at this level. In addition to the usual I/O

function, sequential associative access can also be implemented

because of the close coupling between the intelligent control

unit and the mass storage device. If the mass storage device

is a disk, parallel read may be implemented to obtain storage

33

search speeds. The mass storage can also be a charge-

coupled device (CCD) storage or bubble storage depending on

the size and speed required. The controller is connected to

the general purpose host through the normal I/O channel.

The storage hierarchy approach is a specialized

architecture which can make database operations more

efficient. The essence of this approach is that the same

characteristic which makes a cache attractive for main

storage access can also be used to improve access to mass

storage. A wide variety of applications exhibit considerable

locality of data reference. This is true of data reference

by a processor to main storage for many applications, and

has been exploited in the form of a cache, or high speed

buffer. When the processor needs a word from main storage,

the request is first made to the cache. If the desired word

is in the cache the access is completed typically in 50 to

150 nsec. If the request is made to main storage it is

typically completed in 800 nsec. A database cache is inserted

in the system between main storage and disk.

The network node approach is a general purpose

computer which communicates with several other nodes in the

system; most frequently using data communication protocol

and serial channels, but possibly using I/O channels. The

benefit of this configuration is that several nodes (hosts)

can access a single shared database. The network node can

be implemented using a general purpose system only (which is

34

current practice), a general purpose host with a back-end

processor, or a general purpose host with an intelligent

control unit.

b. Integrity of DDB in Database Computers

From the viewpoint of integrity, the back-end

processor approach is more beneficial than the other approaches

Using the back-end approach will improve the database integrity

at local level. The back-end provides a single path to the

database. This eliminates "back door" paths to the data

through use of the same mass storage subsystem for both the

database and normal system files. Application programmers

can be prevented from programming the back-end computer and

thus possibly introduce "sneak" access paths. Integrity

at the local level is also improved by a single access path

because locks on updates can be strictly enforced.

Site recovery can presumably be improved because

a failure in the host computer will not compromise the data-

base. Also, presumably the back-end computer has much less

hardware and much simpler software than the host, thus

extending the time between system failures. The host and

back-end can check on each other's sanity, including keeping

separate audit trails.

However, there are trade-offs in this approach.

The second processor and the software will add cost and

complexity in initial development and in maintenance. Two

hardware systems and two software systems must be maintained,

35

thus increasing training and support costs. The reliability

of the system will be degraded because having a second

system will increase the failure rate which will threaten the

integrity of data in case of partitioned DDB. In the other

types of distributed database systems this failure has less

threat (in cases of partially redundant DDB), or no threat

(in cases of fully redundant DDB), since the entities are

stored at more than one site.

Another advantage for the back-end processor,

which is relevant to DDB, is the ability of this processor

to decouple the database from the host to ease conversion

or interface multiple heterogeneous hosts.

2. Effective Communication Systems

The communication system describes the way in which

the links and nodes of a computer network are connected.

Because no specific definition of the precise composition

of computer networks exists, several methods of characteri-

zation can be used. One characterization involves the

reasons for which a network is used. This includes computer

resource sharing, database sharing, program sharing and

program segmentation. The geometrical arrangement of

system resources could be viewed from two points of view:

in terms of topology, and in terms of communications

structure [Ref . 15]

•

Network concepts can be classified according to how

they contribute to the design of a distributed system or

36

distributed database. The manner in which work is partitioned

in a computer network essentially determines how effectively

the resources of the network are utilized.

a. Computer Network Message Techniques

In a computer network the techniques for routing

messages from source to destination are generally classified

as circuit switching, message switching, and packet switching.

Through one or more of these techniques many computer networks

provide packet switching capability and virtual circuits. A

computer network performs a set of well-defined functions,

uses a set of network components, and adheres to a collection

of rules and protocols. A protocol is a set of conventions

between communication nodes that governs the procedures and

format of message transmission.

b

.

Network Management

Network management is the process which determines

through what facilities a message will travel from its source

to its destination. It is also concerned with the management

of network resources—communication links, switching nodes,

and communications processors. There are two basic types of

network management systems:

Master-Slave or "hierarchical,"

Distributed or "horizontal."

The two types will be discussed separately.

The master-slave network management refers to

the use of one or more master stations or processors that

37

control a plurality of slave processors or nodes. The routing

of a particular message is directly controlled by the slave

processors, but the general management is controlled by the

master station or processor.

Distributed network management refers to the use

of decision making facilities at each node (processor) with

no one node given control over another node. Depending upon

the type of network and the number of nodes, data communication

networks are typically designed using one of these two types

of network management systems.

Some of the issues that must be considered in

determining the type of network management system for a given

application are:

Hardware and software availability.

Reconfigurability and flexibility,

Susceptibility to communication failures.

Prom the above issues, it can be pointed out that master-

slave systems are much more structured and accountable,

more available, in more widespread use, and often more

flexible than distributed configurations. Distributed

networks are more reconfigurable and may offer less suscep-

tibility to communication failures

.

Network and communication components which are

part of the distributed system include the basic components

of the database system, the schema, the data, and the

programs. A distributed database system therefore should

38

be designed around two sets of objectives: database objectives

and communications objectives. The database objectives are

availability and integrity. Communication objectives involve

the reduction of number and size of messages and the path

length between network nodes (effectiveness). The objectives

can be satisfied through the following alternatives:

Splitting the database.

Splitting the directories.

Locating the database programs.

Distributed database system characteristics are achieved

through various combinations of the above alternatives with

any strategy of data distribution (fully redundant, partially

redundant, partitioned).

c. Integrity of DDB in Computer Networks

There are many possible mechanisms which can be

used to make the network computer function efficiently.

These machanisms may reside in any of the distributed system

locations. There are three basic types of control mechanisms

that may be implemented in computer networks to support the

integrity in DDB and to protect against error in access control,

memory control, and integrity control.

(1) Access control . This refers to techniques

for preventing unauthorized access to the computer network,

application programs, memory, or operating systems. Control

procedures can be added to this control to recover from

39

errors or failures and to ensure that no messages are lost or

double processed.

(2) Memory control . This refers to techniques

for setting predetermined criteria such as who can read or

write what from database or memory. In effect, memory

control is access control, not for just the system, but for

specific areas of memory. Specialized techniques such as

internal usage codes or memory encipherment may be implemented

to deter an unauthorized penetration or produce inconsistent

data should a detected penetration occur.

(3) Integrity control . This refers to techniques

for determining the integrity of the computer network. That

is, that it is operating as it was intended to operate. At

the most basic level, all system operations—jobs, application

programs, supporting systems, communications, and so forth

—

are given security codes and checks to ascertain whether such

operations are occurring when they should be. More

sophisticated mechanisms include internal auditing mechanisms

and fail-secure and graceful degradation systems.

3. Software Reliability

Although many efforts to improve software quality

and reliability have been made, it is hard to say if they

will completely eliminate software failures. In the Bell

Laboratory Electronic Switching Systems (which employ

hardware redundancy and thoroughly tested software) soft-

ware accounted for approximately 20$ of all failures [Ref. 16]

40

Continuous software modification for large systems

leads to additional failures. In many database applications

such as computerized air-line reservations systems, isolated

small breakdowns can be tolerated as long as the overall

system remains operational. However in another application,

traffic control systems for example, only moments of cessation

of service can be tolerated; incorrect results are unacceptable.

There are two basic concepts that make up reliability of

software.

a. Correctness

A program is correct if it performs properly

the functions that were intended and has no unwanted side

effects

.

b. Robustness

A program is robust if it will continue to do

something reasonable in the presence of environmental

changes (such as hardware failure) and demands (such as

bad data) that were not foreseen. In addition to robustness,

the terms fault-tolerant and error-resistant are often used

to describe this property.

The need for reliability of operations in large

automated real-time systems is becoming increasingly important,

particularly in transportation applications and nuclear

industry [Ref. 17]. For such systems it is important to

have high confidence that the system will behave as expected

for all possible environments. Software structures must be

41

investigated which provide fault tolerance in addition to

fault avoidance. Correctness is a more narrow concept since

it refers only to the operation of a system with respect to

conditions that can be laid down in advance.

Robustness is concerned with making programs well-

behaved in the face of unexpected events, so that it can cope

with such situations. Coping means finding alternative ways

of carrying out required functions, even though something is

wrong. It may mean notifying a higher authority that

something is wrong. It almost always means not propagating

the error so that problems are contained and catastrophies

do not occur. It may mean finding some way to recover from

the malfunction.

Figure 2 illustrates the various steps of fault

tolerance. A detailed discussion of these steps and the .

different techniques for fault tolerance is available in

Reference 18.

(1) Error detection . The first step is to

recognize or prevent system failures by designing proper

checks for every critical step. A detected error is only a

symptom of the fault that caused it and does not necessarily

identify that fault. Usually there is many-to-many mapping

between errors and possible reasons.

(2) Hardware reconfiguration . At this step

a different strategy will be to ignore the fault and try to

continue to provide service despite its continued presence.

42

ERROR
DETECTION

W-
HARDWARE

RECONFIGURATION

RECOVERY

AL
— — — — — — — — —i

SOFTWARE RECONFIGURATION

<"

V

Figure 2

STEPS OF FAULT-TOLERANT PROCESSING

43

Reconfiguration necessarily involves some degree of perfor-

mance and/or function degradation.

(3) Recovery . Once the system goes into an

erroneous state, its resources (program states, databases)

should be brought to a correct state before further

processing can be continued. Forward or backward error

recovery techniques are used.

(4) Software Reconfiguration . A different

strategy in this step could be used. In the distributed

software environment, a higher authority or the central

module can be notified to take an action, i.e., isolating

the software portion which contains the error (locking the

site where the error originated).

4. Reliable Software and DDB Integrity

a. Distributed Software

Reliable software should support the data

distribution in distributed systems. There are a number of

functions required to be handled in a distributed database

system. Ideally, there would be only one integrated piece

of software. However, the most likely method of development,

because of the amount of effort required, is that additional

software will be written to interface to the standard

components supplied by the manufacturer or software vendor

in order to handle the distributed database aspect. The

standard components would be the same for either a single

computing facility or distributed system. These include:

44

Standard operating system of each computing

facility.

Network communication software.

- DDBMS, DBMS.

Control structure or network component

(additional component).

Therefore, reliable measures should be applied for all the

pieces of distributed software,

b. DDB Integrity

One way to ensure that incorrect data is not

stored in the database is by defining integrity assertions

on the distributed structure and semantics of database, and

surrounding the local databases with an integrity monitor.

Any access to the database would pass through the integrity

monitor for verification. Transactions violating the

assertions would be disallowed. There are three issues

reported in Reference 18 regarding this approach for

ensuring integrity of the distributed database:

Design of integrity assertions.

Language of the integrity assertions.

Monitoring of integrity assertions.

(1) Integrity assertions . There are two types

of integrity assertions that can be defined at the local

database

:

(a) Structural constraints. For example,

we can declare that duplicate keys or records are not allowed

45

Every table must contain only those items which are fully

dependent on the attributes. No transitive dependencies

among attributes are allowed.

(b) The actual values. These values of the

constant are stored in the database. For example, we can

limit the value of an item to be within reasonable bounds.

(2) Language of integrity . The language used to

express integrity assertion could be the same as one used for

accessing the data. DDBMS should enable the local DBMS's to

define their assertion. (See [B. 1]) DBMS can use tables

(such as header to data file) to describe integrity assertion.

These tables are brought at the time of access of these files.

It is important that DDBMS (in the case of partitioned DDB)

maintain a global table which would contain the whole local

table.

(3) Monitoring of integrity . The monitoring or

validation of integrity assertions can be done before executing

the transaction at run time, or after executing the transaction

Each DBMS should monitor the assertions for the data residing

in its local node. The three methods are briefly described

below:

(a) Pre-execution. This method requires:

(i) Simulating the transaction to

find results that would be written if assertions are not

violated (what is to be written?).

(ii) Checking the assertions.

46

(iii) Executing the transaction if

all the assertions were found true.

(b) Run-time validation. This method

requires: (i) Executing a transaction,

ignoring its "write" operations.

(ii) Checking the assertions,

(iii) Performing the "write" operations

if all assertions are found true.

(c) Post-execution validation. This

method requires

:

(i) Executing transactions completely.

(ii) Checking the assertions.

(iii) Performing corrective actions.

Which of the above methods is best? This

will depend on the types of transactions that will be entered

in the database system. If we have the list of items for

read and the list of items for write, the pre-execution

validation cost is less than or equal to the run time

validation cost, which is less than or equal to the post-

execution validation cost,

c . Summary

Understanding the importance of the reliability

issues for the DDB in the early stage of planning can help

the system designers to build software that will be fault-

tolerant and which will lead to robust processing. It will

also support concurrent processing with the assurance of

consistency of DDBS.

47

B. MANAGEMENT CONSIDERATIONS

1. Decentralized Authorization

The increase in size and complexity of database

systems (i.e., Distributed Database over hererogenous hosts)

requires the decentralization of some database functions to

avoid performance bottlenecks and to improve accessibility

without losing integrity of the data. One form of decen-

tralization is delegation; just as the general administration

of an enterprise is delegated in an hierarchical way which

can be easily decomposed into autonomous functional units.

a. Authorization Functions

Decentralization of authorization functions in

distributed database means that authorization functions,

instead of being in the hands of DDBMS, are distributed to

local DBMS' s of the system. The DDBMS may wish to retain a

separate administrative function in order to better control

the database or delegate some of the administrative rights

(i.e., the right to grant access to a particular class of

database) to a local DBMS.

b. Decentralized Authorization Model

A model for decentralized authorization for

partitioned database has been proposed by Wood S. Fernandez

(Appendix B). This model is independent of database con-

figuration (centralized or distributed). It can be adapted,

after slight modification, for non-redundant DDB. Each node

needs to have a replicated class-node directory (which

typically will be small compared with the number of

48

authorization rules). Validation of an administrative or

access request requires the reading of the directory to locate

the node where the relevant authorization rules are stored

and passing the request to the DMBS if the rule corresponding

to the request is denied. Rules at other DBMS ' s need not be

searched. The delegation of a class requires access to

authorization rules at possibly two DBMS' s. Recall of a

delegated class requires access to the rules stored at the

nodes associated with the classes in the class structure

subgraph. However, recall is not likely to be a frequent

occurrence. Authorization related functions can therefore

be performed with the minimum of inter-node messages.

c. DDB Integrity and Decentralized Authorization

In the proposed model there are no multiple

delegations of specific administrative rights, e.g., it is

not possible to give to one DBMS the right to define authori-

zation rules for the objects in a class, and to another DBMS

the right to define integrity constraints for these objects.

However, delegation of specific administrative rights

(access rights, types of access, and integrity constraints)

to the local DBMS will improve the accessibility control to

the database and support the overall integrity of database.

In the case of partitioned database, it is helpful to

distribute the integrity responsibilities among the DBMS's

A class may be a set of relations

49

so that every DBMS will be responsible for maintaining the

integrity of the portion of the database which resides in

its local node.

2. Data Independence

Data independence is a capability of a DBMS that

insulates a program from interference with its use of data.

Technically, this means that the way in which the data is

organized in secondary storage and the way in which it is

accessed are both dictated by the requirements of the

application. For example, it may be decided that a particular

file is to be stored in indexed sequential form. The appli-

cation, then, must know that the index exists and must know

the file sequence (as defined by the index) . The internal

structure of the application will be built around this

knowledge

.

Data independence is the additional function that

preserves alternative views of the same stored data during

evolution of the data environment. The importance of data

independence is to reduce the effect of the application

change on the statues of database. There are two types of

data independence: static and dynamic [Ref. 191

•

a. Static Data Independence

Static data independence is the ability to cope

with change in the "everyone out of the pool" mode. All

processing of that body of stored data is stopped. All the

descriptions are rewritten. All the stored data is converted

50

(possibly automatically) to correspond to the new descriptions

All the application programs that access the stored date are

converted (possibly automatically) to correspond to the new

descriptions. When this conversion is complete for the entire

database, then processing can resume. For the heterogenous

nodes configuration, it may be possible that each local

database will conduct the above separately,

b. Dynamic Data Independence

Dynamic data independence is the ability to cope

with change when there are not two states (the pre-existing

and the target), nor the ability to suspend processing

during the conversion. Dynamic change can be characterized

as the concurrent existence of different forms of represen-

tation: organization, indexing, access paths, materialization

algorithms for the same kind of data. An example of dynamic

change is the distributed database in real-time system often

cannot be taken down while the stored data is reconfigured

and reorganized.

DDBMS or DBMS dynamically provides the data to

the user or the user's program as it expects to see the data.

Therefore, the stored data need not be completely converted.

The programs need not be recompiled for the processing of the

stored data to proceed.

Dynamic variation therefore has two aspects:

(1) the existence of different extents of the same kind of

stored data with different sets of descriptors, and (2) the

51

possibility of "rolling conversion" concurrent with proces-

sing. In the first case, the mixture of different formats

may coexist for an extended period of time. All of the old

stored records remain in the earlier format, and all the new

stored records conform to the new format. In the second case,

the conversion mechanism shares the database with concurrent

applications. Applications can utilize stored data subject

to time-variable descriptors, with the system insulating

them from the time variability.

c. Impact of Data Independence on DDB Integrity

Different applications (originating from

different nodes) will need different views of the same data.

For example, suppose that before the enterprise introduces

its integrated database, we have two applications (from two

nodes), AN1 and AN2 , each owning a file containing the label

"Part#." Suppose, however, that application AN1 records

this value in decimals while application AN2 records it in

binary numerics. It will still be possible to integrate the

two files and to eliminate the redundancy (saving the updat-

ing process for one copy), provided that DDBMS performs all

necessary conversions between the stored representation

which is chosen (which may be decimal, binary, or something

else again)

.

DBMS will have the freedom (at the local level)

to change the storage structure or access strategy or both

in response to changing requirements, without having to

52

modify existing applications. If applications are data-

dependent such changes involve corresponding changes to

programs. This leads to unpredictable errors, especially

for large systems such as distributed database systems.

It follows that the provision of data indepen-

dence should be a major consideration in managing the data-

base system. Such consideration may take an important role

in reducing the software errors which threaten DDBS

integrity

.

C. OPERATIONAL STRATEGIES

1. User Error Detection and Avoidance

At least two types of user errors exist which can

threaten the database consistency:

User programs can be incorrectly programmed.

User programs input data can be incorrect

.

Errors from the first type are generally detected at debugging

time. However, it is obvious that some of them remain.

Therefore, DBMS should prevent incorrect database updating

due to incorrect programming. Errors from the second type

usually happen when end users who are performing data entry

are not specialized persons . To prevent such errors , the

user program should verify the input data as completely as

possible. However, it is not possible to avoid some typing

errors, such as 3,000 in place of 3,200 for a salary. Even

if all verifications are not possible, it is desirable that

53

tools be supplied in order to detect and correct or avoid

user errors. Such tools could be intelligent terminals.

a. User Error Detection

The semantic integrity is a method utilized to

detect user error by enforcing integrity constraints. These

constraints are defined by the DBA and are verified by DBMS

whenever the database is modified. At the end of a trans-

action, all integrity constraints should remain satisfied.

However, some of them can be verified after performing a

database update. That is the case for integrity constraints

where only one data item or an individual record is involved.

All other integrity constraints are checked at transaction

end, before committing updates. For this purpose, the data-

base which would be obtained with the transaction updates

is considered and integrity constraints are evaluated. If

one of them is false, the transaction updates are cancelled

and the transaction is rolled back. It is not necessary to

examine all integrity constraints, but only those whose

value (true or false) could be modified by the transaction

updates. Generally such integrity constraint verifications

are very expensive and user error detection by integrity

constraint monitoring appears as an inefficient mechanism.

b. User Error Avoidance

There are some efficient semantic integrity

verification methodologies which have been proposed by Hammer

[Ref.20] and Gardarin [Ref. 21]. In these approaches, semantic

54

integrity is maintained at compilation time rather than at

execution time. Therefore, one can say that user error is

avoided.

(1) The first approach . This is based on an

analysis of operations performed by a transaction at compila-

tion time. The integrity constraints studied are restricted

to those constraining an individual object. Consider a pair

of operation-integrity constraints: an assertion processor

performs an analysis that produces an efficient test for

the assertion under the operation. This process begins with

perturbation analysis. This determines the effect that

execution of the operation can have on the truth of the

assertion. The information thus derived permits determina-

tion of a set of conditions under which the assertion can

remain true after executing the operation. If the conditions

are suspicious, then the assertion processor generates an

efficiency test that will be performed at the time the

operation will be invoked, and which will determine the

assertion value. Moreover, whenever possible, the generated

test can be evaluated before executing the operation, thus

allowing the avoidance and execution and rollback of the

operation. In addition, several equivalent tests can be

generated. The test that should actually be used by the

database system at run-time is the one that is expected to

incur the lowest cost in its execution. Finally, this

approach allows user error avoidance by perturbation analysis

55

at compilation time and prompt, efficient test evaluation at

run-time, but only for restricted classes of integrity

constraints

.

(2) The second approach . This has been proposed

by Gard and is based on program correctness. Transactions

are written in PASCAL-like programming language. A data

manipulation language based on predicate calculus is embedded

in the programming language. An axiomatic definition of both

PASCAL and the embedded data manipulation language is

utilized in order to show that integrity constraints are

constraints through the statements of the transaction with

the Hoare axiomatic and predicate calculus theory. The

formal proof of success requires inclusion by hand of

correct tests in the transaction program. Finally, an

automatic transaction consistency verifier is proposed which

will definitely permit avoidance of inconsistencies induced

by incorrect programming and/or incorrect data entry.

However, to build such a transaction consistency verifier

remains a difficult program proving task.

2. Recovery Techniques

Recovery is the process of repairing the faulty

system or component, or putting right any damage it may have

caused, and of restoring it to normal operation.

a. Recovery elements

Recovery of the database may involve a number of

elements. These include:

56

(1) Database Dump. A periodic copy of the

database is made.

(2) Logs (Journals). These are serial files

which provide a continuous historical record of all the

transactions of a certain type.

(3) Database Log. This contains two types of

entry. First, before image , is a copy of the old, unchanged

version of any block of database. Second, after image , is

a copy of the new version of any block of database.

(4) Log Control Data. This allows a check to

be made as to whether or not the log block was correctly

written.

(5) Checkpoint. This is a stable point

written on the log. In the event of recovery action being

required, a search for incomplete transactions need only

take place between the most recent check point and the end

of the log file.

b. Distributed Database Recovery

There are different methods of recovery for the

distributed database. Each method depends on the particular

recovery points. The recovery situation of the recovery

points may be of two types: transaction recovery points

which lie either on transaction or integrity unit boundaries,

and system recovery points which are check points [Ref. 22].

The methods of recovery are briefly described in Appendix C.

57

Recovery can be employed in updating in two types of DDBS

.

These are as follows:

(1) Update of Partitioned Data . Transactions

may cause amendments to any part of the database when they

are processed. The restart and recovery actions performed

depend much more on the transaction handling methods."

(a) Application Job Chaining. When

application job chaining is the method of transaction handling,

an important consideration is the scope of the integrity

2
unit.- This is used in order to maintain content consistency

as to how much of the database a transaction must have sole

access to. If any integrity unit is required to span several

nodes, then resources are blocked for a significant period

of time. The aim should be to confine integrity units to

within nodes. Therefore each node maintains its own logs of

transactions and database changes. If a particular node has

suffered a failure, then recovery is initiated. The method

of recovery will depend on the type of failure. If the

recording media has been damaged, then roll-forward,

There are two types of updating: delayed update and
immediate update. Our concern here is the latter, since the
immediate update is critical for the integrity issue.

p
Integrity unit: A component of database architecture

which is responsible for monitoring the efficiency of
integritv constraints.

58

roll-forward with roll-back or re-run is employed. If a

transaction or database request has aborted, then roll-back

is employed since the system is a distributed one. The

status of the transaction is of interest to more than one

node. Therefore, when recovery is initiated, messages

indicating that fact should be passed back to the local

nodes.

(b) Transparent access. With transparent

access an integrity unit may span several nodes. A trans-

action in one node may require a section of database that

is not in the local storage. The central or hierarchical

control will grant the requests using mechanisms which

insure the consistency of database. Each node should have

a log that contains transactions and changes in database.

If there is failure in recording media at a particular node,

then the local database is recovered using roll-forward,

roll-forward with roll-back, or re-run. If the failure is in

the transaction then roll-back method is used. The messages

between nodes depend on the type of the control. If the node

issues a request for data which is not in the local database,

the request is sent to the control and the node waits for

the reply. If a failure occurs during the request processing

(at the other node) then the reply may take an unacceptable

length of time. Thus it is necessary to monitor control

messages which receive a response that indicates that

recovery is taking place (in the node holding the required

59

data). The receiving node should roll-back the transaction

and the monitoring control should send a message to the

original node to reinput the transaction at a later time

when the original node has received a control message

indicating that recovery has been completed.

(2) Update of redundant data . In this type of

DDBS, update should take place on all copies which are

redundant within short interval times using the transparent

access as the handling method. This method is a viable

solution for the problem of maintaining the integrity of

DDBS if most of the transactions are from read only types

with a small number of transactions from file manipulation

types. The recovery at this type of update is the same as

for update of a partitioned database. There is an extra

degree of complexity due to requests for data being made

simultaneously to several nodes. In case of failure in

one node, two actions should be taken. First, the transaction

being executed has to be rolled-back. Second , the database

may have to be rolled-back in a number of nodes. Therefore,

control messages will have to be passed to each node and be

rolled-back.

3 . Concurrency Control Mechanisms

In database environments, there are multiple users

and programs which access a database concurrently. These

require a concurrency control. The problem is to synchronize

concurrent interactions so that each reads consistent data

60

from the database, writes consistent data, and is ultimately

processed to completion [Ref. 23]. In a distributed database

this problem is exacerbated because a concurrency control

mechanism at one site cannot instantaneously know about

interactions at other sites. Before discussion of the con-

currency control mechanisms, it is necessary to present the

following:

a. Definitions

Serializability : If the reads and writes

for each transaction among sequences of transactions are

contiguous, such a log is called serial. This serial

sequence of transactions preserves consistency since each

transaction is executed alone. Serializability has been

adopted almost universally as the correct criterion for DBMS

concurrency control.

- Transaction failures : The concurrency con-

troller must also guarangee termination, and must operate

robustly and efficiently to maintain the integrity of DDBS

.

The failure in transaction is due to three problems:

— Deadlock, i.e., two or more processes might

be forced to wait for each other.

— Some process may be indefinitely postponed

by an unexpected conspiracy of events.

Cyclic restart, i.e., the transaction

repeated reaches a blocked state and is aborted and restarted

61

Robustness : this means that the concurrency

controller must operate correctly despite the component

failures. There are three types of these component failures:

A failed site may hold information needed

to synchronize progress transactions.

A failed site may hold stored copies of

data items being updated by a transaction.

— A transaction that is updating data at

several sites may fail after performing some updates but

not all of them.

- Efficiency : the efficiency of a distributed

concurrency controller is determined principally by how much

intersite communication it requires.

b. Types of Mechanisms

In this section the discussion will be on three

concurrency control mechanisms which satisfy the following

criteria: serializability , robustness, and efficiency.

(1) Distributed locking mechanisms .

(a) Local (central) locking. This mechanism

is the most widely used in concurrency control. Locking

synchronizes transactions by explicitly detecting and prevent-

ing conflicts at local levels when transaction issues a READ

or WRITE command. The DBMS attempts to "set a lock" on the

desired data item; the lock is "granted" only if no other

transaction holds a conflicting lock. If the lock is not

granted, the requesting transaction waits until the lock is

62

available and can be granted. DBMS is responsible to

generate lock requests for each transaction issued at the

local node. Since transactions are made to wait for locks,

the possibility of deadlock exists (see Figure 3).

By using a deadlock graph in the DBMS,

deadlocks can be detected. There is a deadlock in the system

if, and only if, the deadlock graph has a cycle (see

Figure 4) . If a deadlock exists some transaction in the

cycle is backed out and restarted, but this may lead to

cyclic restart. A simple way of avoiding this problem is

to always abort the "youngest" transaction involved in the

deadlock. Indefinite postponement can be prevented in a

locking mechanism by processing lock requests on a first-

come, first-served basis.

(b) Global locking. One site (node) of

DDBMS may be designated a "primary site." It manages all

synchronization for the whole system. When a transaction

needs to access data at any node, a lock is requested from

the primary site. Although locks are centralized at the

primary site, the database is, of course, distributed.

Once a transaction is granted a lock it may access data at

whatever site has a copy. To maintain the data integrity

in the case of updating data items that have many stored

copies, all copies must be updated before the lock is

released. Otherwise, another transaction can read a copy

of the data item before the first update propagated there

(inconsistency)

.

63

Transactions

READ (x

end

T.

WRITE (y)-,

READ (y)-

WRITE (z)-,

READ (z)4

Order in Which
Transactions Issue
READS & WRITES

>R
X

(x)

>R
2

(y)

->R
3

(z)

J>W
1

(z)

^W
2

(z)

WRITE (x)- >W (x)

Order in Which
DBMS Executes
READS & WRITES

Rn (X)

"}
Concurrency

Control

1

R. (y)

(x)
DBMS

W_ (y) Cannot be scheduled because it
conflicts with Rp (y)

W
2

(z) Cannot be scheduled because it

conflicts with R-, (z)

W
3

(x) Cannot be scheduled because it
conflicts with R- (x)

'Reference 23

THEREFORE: DEADLOCK

Figure 3

DEADLOCK'

6U

W (y,) must wait for T„ to

release Lock on y

W (:x) must wa
for Tp

release
lock on

must wait
for T. to

release
lock on z

Figure ^

DEADLOCK GRAPH

FOR FIGURE 3

65

The principal drawback of primary site

locking is that the primary site tends to be a bottleneck.

The capacity of the primary site to process locks binds

the capacity of the entire distributed system.

(c) Redundant primary locking. If for

each logical data item there is a copy in each site, there

will be no single site that is primary in any sense. This

approach is called primary copy locking. It eliminates

the primary site bottleneck, but this mechanism introduces

a new problem of deadlock detection. The solution is to

designate one site of the DDBMS as the "deadlock detector."

Periodically each other site sends it a list of newly

granted or released locks, and newly pending requests. The

deadlock detector then operates as in the Local Locking

case. To maintain the integrity of database, if a trans-

action is written into a data item, all copies must be

updated before the lock is released.

(2) Conflict-Driven Restart Mechanism . This

mechanism is used as a model of transaction execution in

which each transaction is active at only one site at a time

It moves from site to site during its execution. When a

transaction wants to access a data item, a site must test

whether it conflicts with a previous access made by an

in-progress transaction. If it does conflict, one of three

actions is possible: it waits, it is restarted, or another

transaction is restarted. If the system responds to

66

conflict by making the requesting transaction wait, deadlock

is possible. To avoid deadlock, Rosenkrantz, et . al.

[Ref. 24] proposed two mechanisms that substitute restarts

for waiting. Both mechanisms require that transactions be

assigned unique "timestamps" when they are submitted.

Intuitively, timestamps correspond to the time a transaction

was submitted. They have two important properties:

timestamps assigned at different sites must be different,

and timestamps are used to resolve conflicts such as the

following. In one mechanism, called the Wait-Die System,

the requesting transaction waits if it has a smaller time-

stamp (i.e., is older), or else it is restarted. In the

second mechanism, called the Wound-Wait System, the

requesting transaction waits if it has a larger timestamp

(i.e., is younger), or else the transaction is restarted.

(3) Majority Consensus Mechanism . This is one

of the first distributed concurrency control mechanisms

proposed by Thomas [Ref. 25]. The majority concensus

algorithm assumes a fully redundant database. A transaction

executes at one site. The READ command accesses stored

data at its site and does so without locking or any other

synchronization. Whenever the transaction issues a WRITE

command, the name of the data item being updated and its new

value are recorded in an update list. The database itself

is not modified at this time. When the transaction is

completed, the update list is sent to all sites and each

67

site "votes" on it. If a majority of the sites vote, "Yes,"

the transaction is accepted and the updates are installed at

all sites; otherwise the transaction is restarted. The

origin of the algorithm is the rule that determines how each

site votes. A site votes, "Yes," on transaction T if:

The data items read by T have not been

modified since T read them (the algorithm requires that a

data item must be read before it can be written)

.

T does not conflict with any transaction

T' that is pending at the site (T' is pending if the site

has voted, "Yes," but T T has not yet been accepted or

rejected systemwide).

In order to meet condition (1), the algorithm

uses a timestamping technique. Transactions are assigned

timestamps as in "Conflict Driven Start" and each stored

data item is tagged with the timestamp of the most recent

transaction that has updated it. Also, update lists are

augmented to include the name of each data item read by the

transaction and its timestamp. When a site receives an

update list it can compare timestamps to determine whether

Condition (1) holds. Since augmented updated lists specify

transaction READ-sets and WRITE-sets, Condition (2) is

easily checked as well.

If Condition (1) is not satisfied, the site

"votes" the transaction and it is restarted. If (1) is

satisfied but (2) is not, the site cannot vote on this

68

transaction until the pending one is resolved. Since

different sites receive update lists in different orders,

they vote in different orders and deadlock could result. To

avoid deadlock, the sites votes, "No," if (1) holds, (2) does

not hold, and the transaction has a larger timestamp (i.e.,

is younger) than the pending one. If a majority of sites

vote, "No," the transaction is restarted.

The voting rules ensure that two conflict-

ing transactions are both accepted only if one has read the

other's output. Since both transactions received a majority

of "Yes" votes, some site, say S, must have voted "Yes" on

both transactions. Since they conflict, S must have

installed one before voting on the other. This guarantees

that the second read the first one's output; otherwise S

would not have voted, "Yes." This is sufficient to guarantee

serializability and to preserve distributed database

consistency

.

D. COMMUNICATION STRATEGIES

1. Distributed Loop Data Base System (DLDBS)

Another strategy for communication is the DDLCN

approach which was proposed by Liu [Ref. 26]. The approach

is simple to implement; also it is robust with respect to

failures of communication links and hosts. Moreover, the

approach has good performance (high throughput and low

delay). Discussion of the reliability of such an approach

69

in site crash will follow the definition and the implemen-

tations issues of DDLCN.

a. Definition

DDLCN is designed as a fault-tolerant distributed

system that midi , mini, and micro computes through careful

integration of hardware, software, and communication.

b. Implementation

DDLCN is a local network using a loop topology.

It has two communication loops to transmit messages in

opposite directions. Each host is connected to the network

by a microprocessor-based loop interface unit (LIU) which

has its own RAM, ROM and sufficient computer power to work

as a front-end processor for the host. The LIU design is

unique in that it incorporates tri-state control logic,

thereby enabling the network to become fault-tolerant in

instances of link failures by dynamically reconfigurating

the logical direction of message flow. In designing distri-

buted loop data base systems (DLDDBS) for DDLCN two types of

nodes should be considered [Ref. 27]:

(1) Loop Request Nodes (LRNS) . This is where

users can make requests to DDB.

(2) Loop Data Nodes (LDNS) These contain the

physical data and the DBMS needed to satisfy the requests.

It is assumed that when a user tries to access

DLDBS by sending a transaction, a user process is created

70

in an LDN. After some integrity checking is done and the

transaction is considered valid, the user process send this

transaction (in case of an update transaction) to LDCS.

c. Operation of the Algorithm

Briefly the algorithm is assumed working on

types of communication subsystems which have reliable end-

to-end protocols. In normal cases (no site crashes or link

failures), the protocols in the communication subsystem can

guarantee that: (1) a transaction message will eventually

be delivered to all destinations, and (2) transaction

messages from a node are delivered in the order in which

they were sent.

The distributed software residing at each LDN

to enforce mutual consistency among database copies is

called the consistency enforcer. It is a component of the

inter-database control software. Each DBMS at LDN has its

own processes to handle local concurrency control when

local transactions are executed concurrently. It is

assumed that distributed transaction processing is initiated

by user processes, each of which is local to one of the LDNS

.

User processes may be either processes representing some

remote on-line users or processes on behalf of application

programs

.

In abnormal cases (site crashes and communication

link failures), the robustness of the algorithm maintained

the following:

71

The system will continue operating in spite

of site crashes and communication link failures.

A transaction message is put in execution

waiting a cue EWB of either every site or no site.

If a transaction message is put into EWB,

it will be dispatched and executed to completion sooner or

later; all transactions are eventually dispatched in a

total ordering according to their priority.

d. DDB Integrity Using DLDBS

(1) Communication Link Failures . The algorithm

requires that each node has (direct and indirect) paths to

every other node. Therefore, as long as no site is partition-

ed from the network communication, link failures do not

create any difficulty to the algorithms. When the network

becomes partitioned, the partition which has a majority of

nodes in the network still can continue operating and it

treats the nodes in the other partition the same as crashed

sites. Only one partition is allowed to operate; otherwise,

inconsistency among DDB in different partitions may occur.

Using the recovery technique for site crashes, the network

can return to a consistent state after the partitions are

repaired. However DDLCN network partition is rare due to

the tri-state control mechanism built into the interface.

(2) Site Crashes . The algorithm can continue

operating in the case of one or more site crashes. The DDB

will recover from anomalies and lead to a consistent state

72

when a crashed node has been repaired. Without going into

further detail, the algorithm in this case needs "a reliable

broadcast" facility [Ref. 28] which guarantees that a

broadcast message will reach either every destination or

no destination when the sender crashes during the broad-

casting. Moreover, the algorithm needs a recovery algorithm

to facilitate the withdrawal of a crashed site from the

whole site.

2. Distributed Semaphore Method

Distributed semaphore is another approach of communi-

cation strategy for ensuring the consistency of a multiple

copy database. Discussion in this section involves the

definition of distributed semaphore, implementation issues,

and how such a method operates in distributed database

environments

.

a. Definition

A distributed semaphore is designed so that for

every P operation that is completed by a process, an associated

V operation has been performed [Ref. 291 . This type of

semaphore was originally developed to facilitate the solution

of synchronization problems in distributed systems.

b. Implementation

Implementation of distributed semaphore according

to Schneider [Ref. 30] needs certain assumptions regarding

the communication network:

73

(1) Assumptions

Broadcast Assumption. If a site broadcasts

a message that message will be received by every other site.

Message Order. All messages that originate

at a given site are received by other sites in the order in

which they were broadcast.

Timestamp. A timestamp is associated with

each message m and it is assumed that the timestamps are

consistent with causality. In other words, timestamp of V is

less than the timestamp of Vp if V, can affect Vp

.

A Message Queue. For each distributed

semaphore implemented, a message queue is maintained. At

each site this queue will contain the received messages

arranged in ascending order by timestamp.

Acknowledged Message. When a message is

received at a site an acknowledgement message is sent to all

other sites.

A Fully Acknowledge Message. This message

is sent by the originating site when the message has been

received by every site in the system.

- V# (ds.,x). The identification number of

"V semaphore ds .

" messages with a timestamp is less than or

equal to time '
x'

.

- P#(ds.,x). The identification number of P

semaphore ds. messages.

74

(2) Operations Implementation

P and V operations in distributed semaphore

are implemented as follows:

V(ds.) Broadcast message "V semaphore ds .

"

P(ds.) Broadcast message "P semaphroe ds .

"

Let tc denote the timestamp on this message.

Then wait until any message m f concerning ds

.

is received and fully acknowledged

V#(ds., ts(m')) > P#(ds.,tc).

It is not necessary to store the entire message queue for

each semaphore at every site. Instead, the relevant informa-

tion from the message queue can be coded in a few integer

variables. Due to the message m' order assumption, after a

message m is fully acknowledged at site L, no message m T where

ts(m ?
) < ts(m) will be received at L. Furthermore, the

implementation of distributed semaphores outlined above

requires only V#(ds.,x) and P#(ds.,tc) [Ref. 311-

The initial portion of the message queue can be stored

in two integer variables: P# and V# . As messages are

received, they are put in a bound message queue. The

capacity of that queue need not exceed the number of sites

in the system. P# and V# are updated by increments of one

and then the message is deleted.

75

c. Operation of the Method

In the situation where there are multiple copies

of some of the entities in the database, i.e., partially or

fully redundant distributed database, all copies should have

the same change when any transaction updates one of these

copies. The transaction need only deal with one copy of the

database in order to update the other's copies. Thus the

transaction has to broadcast to all these sites a timestamped

message containing the entry and its new value. Upon receipt

of such messages, a site must broadcast an acknowledgement

message to all other sites. The update on the database at

site M may not be executed until site M receives a fully

acknowledged message from the other sites. This is because

prior to that time other messages may be.received which carry

updates to the semaphore for the database. Since the message

order holds for all messages, then both the update and distri-

buted semaphore messages will use the same communication

network. This implies that when a transaction is executed,

the local copy for every node has its own value. This is

because prior to accessing an entity, a P operator on a sema-

phore associated with that entity is perfomed resulting in the

broadcast of a message that must be fully acknowledged for

the P to complete. This serves to "flush" all update

messages to that site from the communication network.

d. DDB Integrity Using Distributed Semaphore Method

This type of communication strategy is well

suited to maintain the integrity of distributed database

76

(fully or partially redundant) by putting all the sites in

full communication with each other. However this impact

of distributed semaphore needs to be developed more fully

in order to avoid the problem of site crashes, since a full

acknowledgement requires the participation of all the sites

One characteristic of this strategy is that it can

develop solutions which are applicable in a broad range of

systems

.

77

V. CONCLUSION

Maintaining the distributed database integrity is not a

trivial problem. Much progress still needs to be made in

several areas, especially regarding link failures, dead-

locking, and integrity constraint monitoring.

We have presented several approaches to preserve the

integrity of a distributed database, and the obvious

question is, "Which one is the best method?" or, "How many

of these approaches need to be considered in one system?"

There are no clear answers to such questions since each

system has its own characteristics and environment.

However, integrity of the database system has to be

provided at many levels. The initial concerns regarding

integrity must start at the design level, which has to use

the preservation of data integrity as one of the design

objectives; followed by the management and operations levels,

which must allocate resources to large numbers of users and

resolve their process conflicts; and then followed in the

communication systems, which have to manage multiway message

traffic between nodes.

A strategy of regular monitoring of a database is essential

during the maintenance phase. Monitoring is possible on two

levels: internal monitoring which can be carried out by

DBMS, and external monitoring which can be carried out by

the user. The latter requires the user to provide assertions

78

regarding data relationships. Finally, more research in

this area is still needed especially regarding time

consistency, reconstruction of consistent global states in

the DDB, and distributed database communication.

79

LIST OF REFERENCES

1. Katzan, H., An Introduction to Distributed Data Processing ,

Petrocelli Books, Inc., 1978, p. 135.

2. Davenport, R. A., Integrity in Distributed Database Systems ,

European COMP. '78, p. 767.

3. Martin, J., Design and Strategy for Distributed Data
Processing , Prentice-Hall, 1981, pp. 282-283-

4. Schneider, F. B., Synchronization in Distributed Environ-
ment , Technical Report 79-391, Computer Science Department,
Cornell University, 1979.

5. Date, C. J., An Introduction to Database Systems , Addison-
Wesley, 1975, pp. 301-303-

6. Bernstein, P. A., D. S. Shipman, J. B. Rothnie, N. Goedman,
The Currency Control Mechanism of SDP-1: A System for
Distributed Database , Computer Corporation of America,
TR CCS-77-09, 1977.

7. Thomas, R. H. , A Solution to the Concurrency Control
Problem for Multiple Copy Data Bases , Digest of Papers,
COMPCON 1978.

8. Champine, G. A., Four Approaches to a Data Base Computer ,

Datamation, Vol. 24, NoVl3, December 1978, pp. 100-106.

9- Endres, A. B., An Analysis of Errors and Their Causes in
Systems Programs , IEEE Transactions in Software Engineering,
June 1975, pp. 140-149.

10. Schneidewind, N. F., and J. Hoffman, Experiment in Soft-
ware Error, Data Collection and Analysis , IEEE Transactions
in Software Engineering, May 1979, PP - 276-286.

11. Lorin, H., Aspects of Distributed Computer Systems , Wiley,
1980, p. 63-

12. Lamport, L. , Time, Clocks and the Ordering of Events in
Distributed Data Storage Systems , Computer Science
Laboratory, Xerox Palo Alto Research Center, 1976.

13. Badal, D. Z., On the Degree of Concurrency Provided by
Concurrency Control Mechanisms for Distributed Databases ,

IFIP Working Conference on Distributed Databases, Inria,

1980, p. 35.

80

14. Champine, op. cit .

15. McGlynn, D. R. , Distributed Processing and Data Communi-
cation Cost , Wiley, 1978.

16. Bhart, B. , Software Reliability in Real-Time Systems ,

AFIPS Proceedings, 1981.
~~

17- Ramamoorthy, C. B. , et . al., A Systematic Approach to the
Development and Validation of Critical Software for
Nuclear Power Plants , 4th International Conference on
Software Engineering, September 1979.

18. Bhart, op. cit .

19. Herbert, S. M., An Overview of the Administration of
Data Base , The Information Technology Series, Vol. 1,
DBMS, 1979, p. 11.

20. Hammer, M. M. and S. K. Sarin, Efficient Monitoring of
Database Assertions , ACM/SIGMOD International Conference
on Management of Data, Dallas, 1978.

21. Gardarin, G. and M. Melkanoff, Proving Consistency of
Database Transactions , 5th Very Large Database, Rio,
19W.

22. Davenport, op. cit .

23. Bernstein, P. A. and N. Goodman, Approaches to Concurrency
Control in Distributed Data Base Systems , AFIPS Proceed-
ings, 1979.

24. Rosenkrantz, D. J., R. E. Stearns, and P . M. Lewis, System
Level Concurrency Control for Distributed Database Systems
ACM Transactions on Database Systems, Vol. 3, No. 2.

25. Thomas, R. H. , A Solution to the Update Problem for
Multiple Copy Databases Which Use Distributed Control ,

BBN Report No. 33^0, Belt, Beranek & Newman, Cambridge, MA,
July 1975.

26. Liu, M. T., et. al., System Design of the Distributed
Double Loop Computer Network (DDLCN) , Proceedings, First
International Conference on Distributed Computer Systems,
1979.

27. Chou, C. and M. T. Liu, A Concurrency Control Mechanism
and Crash Recovery for a Distributed Database System
TdLDBS) , IFIP Working Conference on Distributed Data
Bases, Inria, 1980, p. 201.

81

28. Rothnie, J. B. and N. Goodman, A Survey of Research and
Development in Distributed Database Management , Proceed-
ings of Very Large Data Bases, 1977, pp. 48-62.

29. Schneider, F.B., Ensuring Consistency in a Distributed
Database System by Use of Distributed Semaphores , IFIP
Working Conference on Distributed Databases, Inria, 1980,
p. 183.

30. Schneider, F. B. , Synchronization in a Distributed
Environment , Technical Report 79-391, Computer Science
Department, Cornell University, September 1979-

31. Ibid .

32. Fernandez, E. B., R. C. Summers and C. D. Coleman, An
Authorization Model for a Shared Database , Proceedings
1975 SIGMOD International Conference, ACM, New York,
1975, PP. 23-31.

82

APPENDIX A 1

SOFTWARE ERRORS IN REAL-TIME SOFTWARE

Software errors and their frequency of occurrence

in real-time software. The types of errors can be grouped

into the following major classes:

1. Computation errors: errors in or resulting from

coded equations, equations that

produced values directly from

the physical problem being

solved, and equations used in

bookkeeping sense. Typical

errors are mathematical model-

ing, index, conversion, and

mixed-mode arithmetic.

2. Logic errors: incorrect logic code, missing

condition test, flag not

tested, etc.

3. Data input errors: format errors , input read from

incorect data file, invalid

input read from correct data

file, etc.

4. Data output errors: format errors, data written on

wrong file, incomplete or

Reference 16

.

83

5. Data-handlinj
errors

:

6. Interface errors

7. Definition errors

8. Present database
errors

:

missing output, output field

size too small, etc.

errors made in reading, writ-

ing, moving, storing, and

modifying data, etc.

routine/routine interface

errors, routine/system software

interface errors, wrong routine

called, and incompatibilities

between database and using

routines, etc.

errors in specification of

global variables and constants,

data not properly defined/

dimensioned, etc.

data not initialized, initiali-

zed to wrong values, incorrect

data units, etc.

9. Documentation
errors

:

errors in design and operational

documents

.

84

10. Operation errors: wrong database used, wrong tapes

used, configuration, control

errors, etc.

11. Others: time limits exceeded, storage

limits exceeded, etc.

85

APPENDIX B

MODEL FOR DECENTRALIZED AUTHORIZATION

This model is based on the one defined in Reference 32

and adapted to handle the decentralization of administration.

The named items in the database are called database object

types . We make the distinction between object type (or

category) and instances (occurrences) of an object. A data

class , D, is a set of database object occurrences. A sub -

class , Dl, is a subset of the object occurrences of a data

class, and can be defined in terms of the class D and an

arbitrary predicate P:

Dl = D : P

Generally, we refer to data classes and subclasses as

"classes." Classes are the units of delegation of adminis-

tration and can either be disjoint (no common occurrences)

or overlapping. (This is in general, later we will only

allow subclasses to be overlapping.) The structuring of

classes can be described by a class structure graph , CSG,

where nodes represent classes and a directed arc from node

i to node j indicates that class j is a member of class i.

The CSG is always a tree.

Security policies are represented by authorization rules .

An authorization rule is the tuple (s,0,t,p,f), which specifies

that subject s has authorization of type t to those

86

occurrences of object type for which predicate p is true.

In general, user s cangrantthe access right defined by 0,t,

and p if the copy flag f is true. The combination of (0,t,p)

of a rule is called an authorization right .

For this environment, there are two types of rules.

Access rules which are rules controlling database access,

where s is a user; is a database object type; t is an access

type such as READ, DELETE, or UPDATE; p can depend on data-

base values or system variables; and f will be false since

only administrators are able to delegate their rights.

The second type of authorization rule is the adminis -

trative rule , where s is a DBA identifier, is a data class,

t an administrative access type, p is always true, and f can

be true or false depending on the administrator being authori-

zed to delegate this right or not.

Administrative rights refer to the ability to control

the database access actions, as opposed to the ability to

access the database (some examples of administrative access

types are shown in Figure 1). As we are mainly interested

in administration aspects we will write administrative rules

as (s, 0,t,f) for simplicity.

DBA's delegate administrative rights by means of

commands, expressed in some suitable syntax. From these

commands in the system extracts an administrative request ,

which is a tuple (s 1

, P T
, t' , f), where s' is the DBA

entering the command, 0' is the object of the command to

87

which administrative access of type t' applies, and f T

indicates if the access right of s is being delegated. A

similar tuple is extracted by the system when a user

requests access to a database object. (We call that tuple

an access request .

)

Validation of an administrative request (or an access

request) implies finding a rule where s, and t match the

corresponding parts of the request, and f=true if f'=true.

If such a rule is not found the request is not accepted

and an enforcement procedures, such as logging the illegal

request, is invoked.

It is useful in some situations (for example, when

different DBA's administer classes containing common objects)

to have a context or environment for the requests issued by

the users of the system. In our case a useful context is

provided by data classes, i.e., users make requests in the

context of a class. An access rule becomes now (s ,0,t ,p ,f ,D)

,

where D indicates the context (D is a data class name).

MECHANISM FOR AUTHORIZATION

Using the model discussed above we now propose a mechanism

to implement these concepts. For concreteness we assume a

2
multilevel relational database system where the conceptual

schema is composed of base relations . The allowed access

types are assumed to be READ, DELETE, UPDATE and INSERT.

Classes are restricted to be sets of relations . A basic

class is a set of base relations . For example, suppose

Dl is composed of three relations, then:

88

Dl = (R1,R2,R3)

If R1,R2,R3 are base relations then Dl is a basic class.

A subclass D2 of Dl is defined as

D2 = (Rl f ,R2' ,. . .RN;)

where the relations Rl ' to RN f are projections, restrictions

and joins of the base relations. As an example consider a

simplified banking database containing account and customer

information. Assuming joint accounts are allowed the data-

base might contain the following three base relations:

Rl: (ACCOUNT §, BRANCH #, ACCOUNT_DETAIL)

R2: (ACCOUNT #, CUST #)

R3: (CUST #, CUST_DETAIL)

Subclasses containing information relevant to each bank

branch may then be defined. For example the subclass for

branch Bl would contain the following three relations (informal-

ly defined)

Rl' = (Rl: WHERE BRANCH § * Bl)

R2' = (R2: WHERE ACCOUNT § = Rl' . ACCOUNT #)

R3 r = (R3: WHERE CUST # = R2 .CUST #)

Administrative responsibility for these subclasses

would then be delegated to DBA's in the local branches.

Notice that in general subclasses are not disjoint, i.e., a

a customer may have accounts in different branches.

Administrative access types which apply to a basic

class D are listed in Figure 1. The set of types al - a6 are

jointly referred to as A
R

and are the types automatically

89

A^y a

right to create, delete and modify

objects in D;

right to redefine and delete D;

right to authorize READ access to

objects in D;

right to authorize DELETE access to

objects in D;

right to authorize UPDATE access to

objects in D;

right to authorize INSERT access to

objects in D;

right to recall a delegated right for D

Figure 1

ADMINISTRATIVE ACCESS TYPES

90

given by the system to the definer of a new basic class.

The type a7 is given by the system to a delegator only after

the class has been delegated. The same types with the excep-

tion of al can apply to a subclass and are jointly known as

A„. Access type al includes among others, the ability to

redefine a base relation (for example by adding a new column),

delete a base relation from the conceptual schema and define

semantic integrity constraints for a base relation.

As different DBA's can administer different basic

classes and as the administration of a basic class is associa-

ted with the ability to redefine the underlying data object

types, basic classes must be disjoint (i.e., they must possess

no common objects) in order to avoid conflicts. In contrast,

subclasses can be overlapping because no object types can

be created, deleted, or redefined through subclass .rights

.

Class administrators may delegate some or all of

their rights to other DBA's if the corresponding delegation

flag is true. When they define a subclass, say Dl, from a

class D, they obtain for Dl the same set of administrative

rights that they had for D . The DBA's also authorize user

access to objects within a class (such as attributes), or

to application views which are constructed using relational

operators on the relation comprising the class. In a multi-

level system, access rules pertaining to a view should be

consistent with the access rules for the underlying objects.

We consider that the conceptual level for DBA's consists of

91

the set of base relations comprising the classes which

they administer.

We restrict the administration of a class to a single

DBA and allow a class to be delegated only once. This avoids

the situation where an administrator receives rights to a

class from more than one delegator. Revocation is therefore

simplified and time stamping is not required.

If a DBA delegates the administration of a class then

any access rules that had been authorized in the class

previous to the delegation become the responsibility of the

delegatee.

As administration and database access are separate

functions, a reorganization of the administration function

should not mean that some users of the system can no longer

access the database. Only administrative rights are recalled

when a delegated class is therefore recalled. Access rules

authorized by the DBA's whose administrative rights were

recalled are not deleted but become the responsibility of

the recalling DBA. The recalling DBA can then review the

acquired rules and delete or modify them on an individual

basis.

A simple example illustrates the principles of authori-

zation and revocation. Figure 2 shows a sequence of author-

zations (dl,d2 , . . ,d5) with each arc representing a delegation

or authorization and each node a set of authorization rules.

We call this type of directed graph an authorization graph .

92

(DBA1, Dl, A , true)

d2

(DBA2, D2, A
s , true) (DBA3, D3, A

g
, false)

d3 d4

\f

(DBA4, D4, a3, false)

d5

READ
(Ul, VI, DELETE, p7 false, D2)

UPDATE
INSERT

(U2, 01, READ, p, false, D4)

Figure 2

AUTHORIZATION GRAPH BEFORE RECALL

93

(It is used for illustration purposes only and need not be

stored explicitly in the system.)

We assume DBA1 is authorized to define relations and

hence basic classes. Initially DBA1 has the set of adminis-

tration rights, A„, for the basic class Dl. Classes D2 and D3

are defined by DBA1 as subclasses of Dl and are delegated to

DBA2 and DBA3 respectively (dl and d2). Both DBA ' s are given

the set of administrative rights, A„, associated with a sub-

class, but only DBA2 may further delegate these rights. DBA2

defines D4 as a subclass of D2 and delegates the right to

authorize read access to objects in D4 to DBA4 (d3). DBA2

also defines an application view VI which is a relation con-

structed from the objects in class D2 and authorizes user Ul

to have all access rights to it (d4). DBA4 grants U2 read

access to object 01 in class D4 (d5). The associated class

structure graph is shown in Figure 3« IF DBA1 recalls all

delegated rights for D2 then the class structure subgraph

for D2 is traversed and all administrative rules associated

with the nodes of the tree are revoked from the relevant

DBAs and given to DBA1. The situation after revocation is

shown in Figure 4 and is logically equivalent to DBA1

having authorized all the access rules. Notice users Ul and

U2 are still authorized to access the database.

94

D

D2

M

D3

y

Figure 3

CLASS STRUCTURE GRAPH

(DBA1, Dl, A
B , true)

(U2, 01, READ, p, false, D4) (DBA3, D2, A
s

, false)

READ

(Ul, VI, DELETE ,p, false, D2

UPDATE

INSERT

Figure jj

AUTHORIZATION GRAPH AFTER RECALL OF CLASS D

95

ALGORITHMS FOR DELEGATION AND RECALL

In this section we present high-level algorithms for

delegation and revocation. Other necessary algorithms, such

as those for defining classes and authorizing access are

straightforward and have therefore not been included. We

assume that the control information is a set of relations.

In particular, authorization rules are contained in the

relation AUTH defined as

AUTH (s,0,t,f)

,

where the column names are as previously defined and the under-

lines indicate the identifier of the tuples. Only adminis-

tration rules are used by the algorithms described in this

section. The following algorithms are written in a pseduo

ALGOL and describe procedures which are invoked by some

suitable language used by the DBA for authorization. The

notation

RELATI0N_NAME.col_namel[col_name_2=val, . . .

]

indicates a selection of tuples based on the criteria

specified in brackets, followed by a projection onto col_name_l

For example,

AUTH.t [s=s* , 0=0']

selects those tuples in relation AUTH for which the subject

is s' and the object is f and then projects out their

access types. Tuples are explicitly inserted and deleted.

For example the following statement inserts a tuple (s !

,

0'
, t T

, f f

) into AUTH:

96

insert (s — s T

, ~ O f

, t— t 1
, f — f 1

) into AUTH

The statement

:

delete AUTH [s=s
'

, 0=0 T

]

deletes the set of tuples from AUTH that have subject s'

and object '

.

We consider first the procedure CHECK_RIGHTS which is

invoked by all the subsequently defined procedures before

any access to the data control relations is allowed.

CHECK_RIGHTS (s f ,0' ,A' ,f) procedure

(This procedure checks that the subject s f has the set of

administrative access types A' for object 0'. If the boolean

variable f ' is true the delegation flag must also be true

for each access type in A'; f false indicates a "don't care;

condition.

)

begin

if a. AUTH.t [s=s !

, 0=0' , fVf 1 = true]

for all a
±

A'

then return ;

else call ENFORCEMENT:

end

If the set of access types A' is to be delegated, the

flag f must be true for all the rights in A'. If any of

the checked rules is not found, a system-defined enforcement

procedure (ENFORCEMENT) is invoked which, for instance,

may notify a security operator of the illegal access.

97

DELEG_WITH_RECALL is the procedure used for delegating

administrative rights for a class from one administrator to

another while retaining the right to recall these rights.

DELEG_WTTH_RECALL (s 1
, s tT

, D» , A_F) procedure

(This procedure is invoked when administrator s ? delegates

rights for class D f to administrator s ,T
. A_F is a set of

ordered pairs a,f supplied by the administrator s f

,

which represent the set of access type, delegation flag

pairs delegated.)

begin

call CHECK_RIGHTS (s' ,D' , A_F. a, true);

for all pairs a. , f . A F^ i' 1 —

begin

insert (s — s*' ,0 —D'
, t — a. , f — f .

)

' ' 1 ' i

insert AUTH:

end

The CHECK_RIGHTS procedure is invoked to validate that

the delegator does have the administrative rights being

delegated and that the delegation flag is true for each of

them. The delegated rights for class D' are then inserted

into AUTH on behalf of the delegatee. All the delegator r s

rights to class D' are deleted. Finally the delegator is

given the right to recall the delegated administrative

rights for the class. Note we do not allow this right to

be delegated.

98

The delegation policy allows an administrator to delegate

the rights for a class to only one administrator. If it is

desirable to have multiple administrators for some set of

objects, overlapping classes must be defined and separately

delegated. This avoids the situation where an administrator

receives administrative access to a class from two different

delegators. Although the existing access rules associated

with the objects in class D T are now logically the responsi-

bility of the delegatee, no physical alteration of the rules

is necessary.

Upon recall of a class the administrative rights that

were initially delegated for that class are restored to the

delegator and removed from the delegatee. However, there

may now be a number of delegatees from whom administrative

rights must be removed. This is because the initial delegatee

may also have delegated the class. Furthermore, it is not

sufficient just to remove all administrative rules from AUTH

which are associated with the recalled class because sub-

classes may have also been defined. Thus, the CSG for the

delegated class, which we assume is a by-product of the

procedure for class definition must be examined and the

administrative rules associated with each class corresponding

to a node in the tree must be deleted. The recall procedure

is defined as follows:

RECALL (s 1 ,D') procedure

99

(This procedure is invoked when s T recalls all delegated

administrative rights for class D'. SAVE_ACC is a variable

set by procedure PROP_DOWN containing the set of delegated

access rights .

)

begin

call CHECK_RIGHTS (s' ,D T ,a7, false);

call PROP_DOWN (D 1

);

for all a. SAVE_ACC insert

(s — s' ,0 — D' ,t — a., f — true)

into AUTH:

delete AUTH [s=s f ,0=D' ,t=a7];

end

The procedure PR0P_D0WN is defined as:

PR0P_D0WN (D) procedure

(SAVE is a function which inserts access rights into the

variable SAVE_ACC. CHILD is a function which provides the

children of a node in the CSG.)

begin

SAVE(AUTH.t[0=D]);

delete AUTH[0=D];

for all D. CHILD (D) call PROP DOWN (D.);
1 — 1

end

CHECK_RIGHTS validates that s T has recall rights for

class D f
. The PR0P_D0WN procedures is used by RECALL to

delete the administration rules associated with the classes

specified in the call parameter. The function CHILD(D')

100

provides the subclasses which are the immediate children of

class D T
. This function is used recursively to identify all

the nodes of the CSG for D'. Before deleting the rules for

the subclasses of D' the access types are saved by the function

SAVE into the set SAVE_ACC . The recall procedure then

restores the administrative rights of s* for class D T using

the administrative access types stored in SAVE_ACC . Finally

the right for s' to recall class D' is deleted. Notice that

since the access rules (indicating regular database access)

do not indicate who is the administrator that wrote them,

there is no need to modify them when a recall has occurred.

101

APPENDIX C
1

RECOVERY METHODS

Recovery of the database when the basic configuration is

dumping plus logging can employ a number of recovery methods.

Which particular method will depend on the particular

recovery situation and the recovery points provided. Recovery

must take place to a consistent state of the relevant part

of the database. The recovery points may be of two types:

transaction recovery points which lie either on transaction

or integrity unit boundaries; and system recovery points,

which are checkpoints. Therefore there are two general

types of recovery. Forward recovery is used where physical

damage has occurred to the storage media. The other type of

recovery is backward recovery which may be divided into off-

line backward recovery and quick (or dynamic) backward

recovery. In either of these cases the storage media are

not damaged; what is desired is to reverse the changes made

by partially completed transactions.

For all methods of recovery in a transaction oriented

environment, it is advisable that the log records transactions

If transactions are not recorded then ambiguities may occur

Reference 2

102

on restart as users may be unsure of which transactions

completed successfully. The integrity of the database is

maintained by the system but it may be destroyed by the terminal

operator. The terminal operator may assume that processing

of a previous transaction has completed successfully when it

has not and he therefore does not re-input the corresponding

input data. Similarly, assumption of non-completion of a

transaction that has completed successfully leads to retrans-

mission of the input data and double updating of records.

1. Roll Forward

In this method of recovery the procedure is the

following:

(i) Restore the database or a particular area of

the database from a dump copy,

(ii) Align the log file containing after images to

a system recovery point (checkpoint) corres-

ponding to the restored state of the database,

(iii) Apply after images until a nominated system

recovery point is reached. This would normally

be the last checkpoint before failure,

(iv) Restart processing of transactions from the

nominated recovery point by receiving terminal

inputs

.

A search is made of the log file between the last checkpoint

and the point of failure and only those transactions on the

log file which do not have a corresponding end of transaction

103

indicator transmit output messages. The transactions which

did complete successfully are rerun but message output is

suppressed.

If an orderly termination of processing was not possible

due to the type of failure, then it may be necessary before

restarting to write an end-of-file (EOF) manually on the log

file.

If duplicate output messages are to be suppressed,

then stage 1), ii) and iii) are as before followed by:

(iv) Search log file betwen last checkpoint and

failure.

(v) Reprocess all transactions on log but suppress

output messages for completed transactions,

(vi) Restart processing of input from terminals.

2. Roll-Forward With Roll-Back

The procedure for this method is the following:

(i) Restore the database or a particular area of

the database for the dump copy,

(ii) Align the log file containing after images to

a system recovery point (checkpoint) corres-

ponding to the resorted state of the database,

(iii) Apply after images until the end of the log.

Civ) Apply before images back to the last system

recovery point in order to achieve a consistent

state of the database.

104

3. Re-Run

The procedure is the following:

(i) Restore the database or a particular area of

the database for the dump copy,

(ii) Align the log, which only contains trans-

actions records, to a point corresponding to

the restored state of the database,

(iii) Reprocess all transactions until the end of

the log file,

(iv) Restart processing of terminal input.

If end of transaction indicators are written on the log file,

then output messages for those transactions can be suppressed

so as to prevent output message duplication. Enquiry only

transactions may be ignored if so chosen as these have no

affect on the database.

Roll-forward, roll forward with roll-back and re-run are

examples of forward recovery whereas the following method is

a method of backward-recovery.

4. Roll-Back

The procedure is the following:

(i) Apply before images back to either:

(a) start of the failed command

(b) start of an integrity unit

(c) start of transaction

(d) system recovery point (checkpoint)

105

(ii) The log file is realigned to a point corres-

ponding to the roll-back,

(iii) Processing of transactions is restarted.

106

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142
Naval Postgraduate School
Monterey, California 93940

3. Department Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

4. Commander of the RSNP
Naval Forces Headquarters
Riyadh, Saudi Arabia

5. Director of Planning and Operations Department
Naval Forces Headquarters
Riyadh, Saudi Arabia

6. Director of Informations Department
Ministry of Defense and Aviation
Riyadh, Saudi Arabia

7. Professor Norman F. Schneidewind
Code 54Ss
Administrative Sciences Department and
Computer Science Department
Naval Postgraduate School
Monterey, California 9 3940

8. Lieutenant Fahad A. Al-Lahaidan
Post Office Box 818
Taif, Saudi Arabia

107

TheSi s
A376^ ,.

Thesis] 7
A3 7 635 Al-Lahaidan
c.l Maintaining the

integrity of dis-
tributed database.

HA« 22 «S I

^L

Thesis 197987
A3 7 63 5 Al-Lahaidan
c.l Maintaining the

integrity of dis-
tributed database.

