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CHAPTER I

INTRODUCTION AND BACKGROUND

Let G be a group and R a ring with unity element 1^. The group

ring of R over G is denoted RG, and is the collection of all formal sums

£ agg
geG

where a e R» anQl for all but a finite number of terms, a„ = 0.
8 «>

Operations in the group ring are:

E ag§ + E e
gg

- E <v y g
geG geG geG

and

(

ĝ

S) (

g?G^
S>

= g^ "here Y
«

=

h?G
ahBh" 1^

The element = 2_» O.g is the additive identity and the element 1 = l^e
geG

is the multiplicative identity, where e is the identity of G. The

collections of elements {l R*g:geG) and {a-e:aeR} are isomorphic to G and

R respectively, and we freely consider, therefore, that RCRG and G C RG.

Any element a e RG which has the special form a = ccg,

aeR, geG; is called a trivial element. Clearly G and RCRG are composed

of trivial elements. A unit in RG is, as expected, an element u e RG for

which there exists an element u e RG such that uu
-

* =1. A unit which

is a trivial element is called a trivial unit. A unit of finite order

k is an element satisfying u
k

=1, and ud + 1 for every < d <_ k.

The question of the structure of units, and particularly of the

structure of units of finite order, in the group ring has evoked considerable





interest. Knowledge of the structure of the units of finite order in ZG,

where G is a finite Abelian group and Z is the ring of rational integers,

leads directly to solution of the group ring isomorphism problem for this

class of group rings. In particular, it is shown by Higman (4), that

since the only trivial units of finite order in ZG are +g, then ZG - ZH

if and only if G - H.

Most of the work to date has dealt with group rings RG in which R

has been restricted to be either a field (usually an algebraic number

field) or a ring of algebraic integers in an algebraic number field.

Passman (6), for example, considers group algebras KG and shows that if

G is not torsion free, and if |k| _> 3, then KG has non-trivial units.

A T.U.P. group (two-unique-product group) is one such that for

any two finite non-empty subsets, A and B of G, with |a| + |b| > 2, there

are at least two distinct elements x, y e G which have unique representations

in the form x = ab; y = cd; with a, ceA;b, deB.

Passman shows that if G is a T.U.P. group KG has only trivial units.

Further, if G admits a strict linear ordering such that x < y implies that

xz < yz for all x, y, z e G, it is called an ordered group, and Passman

proves that an ordered group is a T.U.P. group.

Continuing, he also shows that every torsion free Abelian group can

be ordered. Thus, he has demonstrated that a large class of groups exists

for which the group algebra KG has only trivial units. Clearly, for this

same class of groups, RG has only trivial units where R C K.

Higman (4), in 1940, considered both units and units of finite

order in group rings RG where R is an algebraic number field or its ring
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of algebraic integers; in each case, of characteristic zero. For

finite Abelian groups he showed that RG has only trivial units of finite

order whenever R is a ring of algebraic integers, however even for ZG

he showed the existence of non-trivial units unless G is the direct

product of:

(1) s cyclic groups of order 2; and

(2) either (a) m cyclic groups of order 3 (m >^ 0) or

(b) n cyclic groups of order 4 (n _> 0)

.

In the non-Abelian case he showed that if G* = G x <h> where h^ = e,

and all the units in ZG are trivial, then all the units in ZG* are trivial.

He also proved that for G the group of quarternions, all the units in

ZG are trivial.

Further results in the same paper include: If all the elements of

a group G have finite order, then ZG has non-trivial units unless:

(1) G is an Abelian group, the orders of whose elements all divide

four, or

(2) G is an Abelian group, the orders of whose elements all divide

six, or,

(3) G is the direct product of a quarternion group and an Abelian

group, the orders of whose elements all divide two.

Finally, he shows that if G is an infinite group which is indicable

throughout, and R has no zero divisors, then RG has only trivial units.

(A group is indicable throughout if for every non-trivial subgroup, there

exists a homomorphism from the subgroup into Z whose image is not zero

alone.)
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Berman (1), in 1953, proved that the group ring ZG has non-trivial

units of finite order unless G is Abelian or Hamiltonian of order a power

of two. His work, then, in conjunction with Higman's results leads to

this conclusion: If G is a finite group, neither Abelian nor Hamiltonian of

order a power of two then RG has non-trivial units of finite order, where

R is arbitrary of characteristic zero.

In 1974, Gerald Losey (5), proved that if G is a finite group and

ZG contains a non-trivial unit of finite order, then it contains infinitely

many of them. An excellent survey of results on units in the group ring

has been prepared by Keith Dennis (3)

.

As can be seen, the major thrust of the work on units of finite

order has thus far centered around the more familiar rings, and has explored

the effect of the structures of various groups upon the problem. In view

of the work of Higman and Berman, it would seem profitable to explore

necessary and sufficient conditions on the ring to assure that all units

of finite order are trivial in the group ring, where the group under

consideration is either Abelian or Hamiltonian of order a power of two.

In this paper we restrict our consideration to the case of finite

Abelian groups, but generalize the ring structure considerably; namely,

we consider arbitrary integral domains of characteristic zero. Under

these conditions on R and G we obtain necessary and sufficient conditions

on the structure of R for RG to have only non-trivial units of finite

order. This is the major result of Chapter II.

In Chapter III, we examine those group rings known to contain units

of finite order which are non-trivial. For arbitrary integral domains R

we find an upper bound on the order of the group of units of finite order
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in RG. When K is a field, we construct the generators of the group of

units of finite order of KG, and exhibit the structure of this group

of units.

Appendix A contains results from the theory of group representations

and group characters which are required in our proofs. Notation throughout

is unavoidably cumbersome and an index of notation follows the Appendix.

Lemmas and theorems are numbered consecutively within each chapter

and the appendix in the form X.n where X is the chapter number and n is

the sequence of the theorem or lemma in the chapter. Referenced equations

are numbered in parentheses at the extreme right, consecutively within a

chapter. Reference to equations outside the chapter of the citation will

always cite the chapter.





CHAPTER II
GROUP RINGS, ALL OF WHOSE UNITS

OF FINITE ORDER ARE TRIVIAL

In this chapter, all rings are integral domains of characteristic

zero, and all groups are Abelian with finite order. Let R be such a ring,

G a group, and RG be the group ring of R over G. Let U(RG) be the group

of units in RG, and TU(RG) be its torsion subgroup. An element of U(RG)

is called trivial if it is of the form ag, where a e U(R) and g e G. We

will determine necessary and sufficient conditions on R for all elements

of TU(RG) to be trivial.

Lemma 2.1: TU(RG) (Z TU(Q(A)G) where A is a (not necessarily finite) set

of roots of unity.

Proof: Let [G:l] = n and exponent of G = m. Let K be the quotient field

for R. Since char R = char K = 0, Q C K. Let C be a primitive nth root

of unity. Then Q(5)CK(?), and since Q(0 is a splitting field for G,

so is K(£). (See theorems A. 13 and A. 14 of Appendix A.) Hence we have

an isomophism <J>J

$: K(C)G - K(Oe • • • #K(0 (n-copies) = K(O n

Let T » •••> r be the n mutually inequivalent one-dimensional

Q(0 representations of G. We may associate each representation r' 1 ',

with its character X '• (See the discussion preceding theorem A. 13

Appendix A.) We will denote the value of x at g. by x- • Now an

element a e RG is mapped by * onto an n-tuple in K(;) n , say $(a) =

(3q, .... 3^), since RG C K(OG. From the corollary to theorem A. 15
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of Appendix A we may determine the 3j by the equation:

n-1

Uj - £ a
i)(i

(J = 0, ..., n-l) (1)

or conversely given $(a) = ($q, •••» 3n_i)» we maY determine the

coefficients ot^ from:

n-l

a. = 1/n £ 3.X.
()

(J = 0, ..., n-l) (2)
3 i=0

1 J

Now let u e TU(RG) . Since the order of finite units is preserved

under $, and <J> (u) = (3q» •••» 3n-l) » if uk = 1 , then (B , ••-, 6n-P
= lc

k k
Hence (8 » •••»3n_i)

= 1 from which we see that

g
k = 1 (i = 0, ..., n-l)
i

and each B± must be a root of unity. Applying this constraint on the

permissible values for the (3^ to equation (2) illustrates that each a-j

is a sum of products of roots of unity divided by an element of Z.

Therefore we have shown that u e TU(RG) implies that u e TU(Q(5)G) for

some root of unity 5.

Clearly 6 is dependent upon the particular u e TU(RG) under

consideration. Let A = {5:6eR and 5^=1 for some j} U {^}

Now since K is the quotient field for R, any root of unity is in K if and

only if it is in R. Hence for any unit u e TU(RG) the root of unity

for which u e TU(Q(6)G) is either in R or is 5. In either case it is in A

Thus u e TU(Q(A)G).

Let £ be an arbitrary root of unity and G(Q(0/Q) be the Galois

group of Q(C) over Q. For a e G(Q(£)/Q) we extend the operation of a

to all of Q(OG by letting o operate trivially on G and extending linearly.
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»-l n-1
Then for a c QU)G, a = [a.g., a(a) = Vo(a±) gi .

i=0
'

f=0
n-1

Lerm^L.2^2:. Let \C:1] = n, u =
J] a.g e TU(RG) , a. c R, g. e G . Let 5
j=0 J J J J

be a primitive root of unity of minimal order such that u e Q(S)G. If

no prime divisor of n is a unit in R, then the Norm from Q(6) to of a-

N (aj), is a rational integer (j=0, ..., n-1).

Proof: Considc an arbitrary but fixed a.y By eq. | t (2)

:

i=0

Now by hypothes:
, o.e Q(6) fl R and certainly N (<x.) e Q. Consider theJ J

action of any a e G(Q(5)/0 on a :

j

o (a.) - 1/nT cjp.crx.

x=0

Since 3.c Q( 5 ) and is in fact a power of 6, g

,

E Z(6) and the same is true

of ax. . Let
J

n-1

J i = n x
y, =;,3. x

(i)

x J

Then aCaj) = (1/n) a( Yj ) e R(6) and o(Yj ) e Z(6). Hence it is evident

that N( Yj)e Z, say N(Yj) = c, and so if e = [G(C) (6) /() : 1 } :

N(<V =
I ' a («;) = c/ne c R(5).n Q, and so, c/ne e R fl Q

It remains to show that c/n
e

e Z. Suppose not. Then (c,ne ) = d and we

may write c/n
e

= co/n where (c ,n ) = 1, and ne = n
o
d, and nj- 1. Then

there exist s,tr Z such that cQ s + nQ
t - 1, whence (c /n

Q
)s + t = l/nQ .

Now c
o
/n

o'
R

'
so ( co /no> s

< R an <* since t e Z c R, we have l/n
Q

r r.

There is a prime, p, dividing nQ since nQ * 1, and we may writ. nQ
- pr.

Then r(l/n
) = 1/ P e r, contradicting the hypothesis that no prime

divisor of n is a unit in R. Consequently, n Q
- 1 and c/n* = N( aj ) , y as

requ i red

.
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It is lemma 2,2 that allows Hlgman's theorem on trivial units of

finite order to be extended to a much larger class of group rings (see

Theorem 3 of Higman (A)). In fact, lemma 2,2 provides the means by

which Higman' s proof can be used intact.

Theorem 2.3 Let R be an integral domain of characteristic zero, and G

be an Abelian group of order n > 2. If any prime divisor of n is a unit

in R then RG has non-trivial units of finite order. Conversely, if no

prime divisor of n is a unit in R then RG has only trivial units of

finite order.

Proof: First, suppose n = 2k (k > 1) . If h e R, there exist g, h;

distinct elements of G. Then

h (1 - g - h - gh)

is a unit of order 2 in RG.

If n 4 2^, by the Fundamental Theorem of Abelian Groups,

G = Ci x ... x Ci. where each C^ is cyclic of order a power of a prime

divisor of n. Furthermore, for each p|n, there is some i such that C^

is of order a power of p, and C^ contains an element c ±
of order p. Then

P-L
-j

l/p(22~! cj - pc-jO is a unit of order 2p if p > 2, otherwise of

order 2.*

Assume conversely that no prime divisor of the order of G is a unit

n-1
in R. Let u = } ct.g. be a unit of finite order k in RG. By lemma 2.1

i=0

there is a Cyclotomic extension of Q, Q(£), containing each a^

(i = 0, ..., n-1), and such that Q(0 is a splitting field for G.

*The two examples of non-trivial units do not depend upon the commutativity
of the group. Thus this part of the theorem is also valid for non-Abelian
groups.





= 1 (A)
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By lemma 2.2, for any a
± f 0, N(a

i
) is a rational integer. The

balance of the proof is due to Higman (A)

.

Since u is a unit, some a^ £ 0. For this j, since ct-e Q(?)> tne

absolute value function is well-defined.

n-1 n) n-1 m)
lot-,

I

=
|

(1/n) Jj 3±x (8j)li(l/n)J] 1

6

±X (gj) |

=

J i=0 i=0

and the same is true for each conjugate of a-, o(a.)» o* e G(Q(£)/Q)-

The product

j I a (a.) = N(a.)
a E G(Q(C)/Q) 3 J

and this product is a rational integer. Hence, in (4) we must have

equality (\a^
|

=1) and therefore

3 x
(0)

(gj ) - 3 lX
(1)

( g
j

) - .. . - Bn-iX^^Cgj) - -

so
i

= ajX
(l)

(8
j

) (i = 0, ..., n-1) (5)

Consider ak , k ^ i. From equation (2)

n-1 ,.»

av = (l/n)V]3,x (§u) and using (5):
* i=

k

ak
=

( 1/n > L a iX (8
i
)x (8k 5

i=0

n-r
- (a./n) V X^CgJx^g.) = (a,/n)5. [G:l]

=0 (k = 0, ..., n-1; k j j)

by the orthogonality relations on group characters (see Appendix A

equation (7)).

Hence u = ot.g. and is a trivial unit.
J
6
J
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Denote by e: RG -* R the augmentation map defined by

n-1 n-1

(a) - e(£
o

algi ) - £.±

Let Ker e|n/'Rr ,

>

=: V(RG) . For R a commutative ring as in the present case,

we obtain the decomposition

U(RG) = V(RG) x U(R)

In 1974 H. Zassenhaus (8) proved that if G is a finite group

and R a commutative domain, then if no prime divisor of the order of

G is a unit in R, the order of any torsion element of V(RG) is a divisor

of the exponent of G.

Corollary to Theorem 2.3: Under the hypotheses of the theorem, if no

prime divisor of the order of G is a unit in R, then the torsion subgroup

of V(RG) is isomorphic to G.

Proof: Immediate from the theorem, since every element in TU(RG) is of

the form ag where ae U(R).

In the next chapter we will examine the structure of the torsion

group of units of group algebras which have non-trivial elements. By a

simple counting argument we shall also prove that all units of finite

order when G has order 2 are trivial, thus including the one case

excluded by the hypotheses of Theorem 2.3.





CHAPTER III

THE STRUCTURE OF TU(RG)

Again in this chapter, all rings are integral domains with

characteristic zero, and all groups are Abelian of finite order. In

chapter II we obtained a complete characterization of those group rings

with only trivial units of finite order. Although this result greatly

expands the class of group rings known to be so characterized, there

remains a large class containing non-trivial units of finite order. In

particular, all group algebras KG, where char K = 0, and G is finite

Abelian, are in the latter class.

In this chapter we shall examine the torsion subgroup of the group

of units of group rings known to contain non-trivial elements. We shall

examine the structure of TU(RG) itself, determine its order, and when

R = K, a field, derive its generators.

Information on the structure of TU(KG) is most readily determined

from the decomposition of KG into a direct sum of fields. We recall that

KG = K
Q
e ... e K

d_1
where d <_ [G:l],

and that a unit of finite order in this decomposition has the form

(Bq, ..., 8d_i) where each $. is a root of unity (i <_ d-1) . Let us

denote the isomorphism by:

: KG + K
Q
e ... e Kd_r

Theorem 3.1 : TU(<J(KG)) is generated by the set of d-tuples

12
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{*(u^) = u ± = (1, ..., 6i, 1, ..., 1) : i = 0, ..., d-1, and each $±
is a primitive root of unity of maximal order in K^},

provided that K does not contain all roots of unity.

Proof: By lemma 2.1 TU(KG) C TU(Q(A)) where A is the set of roots of unity

contained in K. If A is a finite set, then there is a root of unity, n,

such that Q(A) = Q(n) • In the direct sum decomposition $(KG), therefore,

each K. contains a maximal cyclotomic extension of Q which is itself

contained in Q(n) . Let the roots of unity which generate that extension

be denoted £ . , i = 0, ..., d-1. Then evtry element of TU(<I>(KG)) is of

the form
d-1

(
nQ £

nd-l) = I u"i
^0» •"» ^d-1 [_£ i

It is clear that the set (u.}._q is independent.

Corollary 1 : If K contains only a finite number of roots of unity, then

TU(KG) is isomorphic to a direct product of cyclic groups, Cq x ... x C^.^*

where C. is of the same order as i. .

l i

Proof: Obvious, since £. generates a cyclic group of the required order.

d-1
Corollary 2 : Let k. be the order of C.. Then the order of TU(KG) is ~| \k

±
.

Corollary 3 : Let G be a group of order 2. Then for any R, every u £ TU(RG)

is trivial.

Proof: Let K be any field containing R, and let n be a primitive root

of unity of order k, such that Q(n) is the maximal cyclotomic extension

of Q contained in K. Since exp G = 2, Q is a splitting field for G, hence

so is Q(n). Then KG = K $ K, and by corollary 2, the order of TU(KG) is

? i i
k . Now G = {e, g} so the trivial units of finite order are n g and n e

(i » 0, ..., k-1) . Hence there are exactly k2 trivial units of finite order,

exhausting the elements in TU(KG).
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Theorem 3.2 : Let K be a field containing only finitely many roots of

unity. Let G
1
and G~ be Abelian groups of order n. Let k be the order

of the maximal root of unity which is an element of K. Then if

exp G± = exp G2 1 k, TUCKG^ - TU(KG
2 ).

Proof: Since exp G. _< k, it follows that K is a splitting field for G .

.

Then by Corollary 1 to Theorem 3.1,

TU(KG,) = C, x ... x C _,; TU(KG
2
)= C'-j^ x ... x C'j^ where the

C^ and the C'^ are each of order k.

Hence, with an appropriate reindexing, C. - C'. (i = 0, ..., n-1) and

TU(KG
1

) = TU(KG
2
).

It is quite clear that even for an arbitrary field K, TU(KG) can be

studied by restricting our attention to the largest cyclotomic extension of

Q contained in K. Similarly, for an arbitrary ring R, it is sufficient

to study the largest cyclotomic extension of Q contained in its quotient

field in order to bound the order of TU(RG). We shall therefore continue

our study of the torsion subgroup of the group of units by restricting

attention to group rings of cyclotomic extensions of Q (and appropriate

subrings thereof) over G.

While theorem 3.1 adequately describes the structure of TU(KG),

it is clear that TU(KG) is unmaneageably large for even quite small

groups. And unfortunately, theorem 3.1 tells us nothing of the form of

an individual unit in TU(KG) as the more familiar formal sum. Our

immediate purpose is to determine the form of the generators of TU(KG)

as formal sums.

Let ? be a primitive m fc " root of unity where m is odd. Then if

m is the exponent of G, Q(0 is the minimal splitting field for G.
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Although Q(-c) Is the same field as Q(^) and -5 is a primitive 2mtn root

of unity, the values of the characters of G will take on only values

which are mtn roots of unity. Obviously the same difficulty does not

prevail if the exponent of G is even. We can avoid consideration of

special cases according to the value of the exponent of G, and at the

same time consider other than minimal splitting fields by an appropriate

adjustment of notation. We shall consistently use a small Greek letter

(usually £) to denote a primitive root of unity of order the exponent of

G, and a distinct Greek letter (usually r,) to denote that primitive root

of unity of maximal even order in K by which we extend Q. It is to be

remembered, nonetheless, that so long as we consider splitting fields

for G, £ will always be some power of n.

Theorem 3.3 ; Let K = Q(n) be any splitting field for G, an Abelian group

of order n. Then the generators of TU(KG) are:

" (1) ^-^gx«(8j ) gj (1 .0,... >n-l) (1)

Proof: We identify the n linearly independent one-dimensional representations

of G with their characters, x » •••» X anc* agree that x is the

trivial character. From equation (2) of Chapter II, the coefficient of g^
n-1

for an arbitrary a = V t.g. e KG is:

i=0
n-1 (r )

aj = (1/n) £e rX (g-;) (j = 0, ..., n-1)
r=0

Let u^ ' be that generator of TU(KG) whose image under $ contains 3^ = n

in the i component, and contains 8, = 1 whenever k ^ i. Then the

coefficient of g* in u'*' is:
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ai
(1)

= (1/n)

n

jx (r)
(8i ) + nx

(i)
(g.)

r=0,r^i
J J

= (l/n) ^x (r)
(g,) -x (i)

(g.) +nx (1)
(gi)

r=0 J J J

and so:

u<i> - £[<l/n) {[x^^g.) -X (i)
(gj )(l-n)}] gi

j=0 r=0 J J J

Since by equation (3) of Appendix A,

n-1

Ex (gi>
= /0 (g, 4 e)

r=0 \n (g\ = e)

n—

1

u
(i)

= (l/n)(n - (1 - n)) + E ( 1 /n)(-X
(i)

(g.) (1 - n ))g,
5=1 J J

= 1 - (1 - n)/n(l + V x
(i)

(g.) g.)M J 3

= l - (l - n)/n - (l - n)/n£x (i)
(g,) g.

3=1
3 J

Since X^(e) = 1, we have:

u U; = 1 - (1 - n)/n(5T X
(i)

(g >g > as required.

j =0 J J

Based upon the set of generators derived in Theorem 3.3, we will find

equations for the general form of any unit of finite order in KG whenever

K is a splitting field for G. We seek an expression of the form:

n-1 . . n-1
u ="

~f(u
U;

)
kl =

J] Ojgj where each k
±

<_ [<n>:l]
i=o j=0

The following computational lemma will be required in the derivation of

the equations.
n-1 n-1

Lemma 3.

A

: Let A = ( £ X
(r)

(g.)g.)
( E X (g,)g.) . Then:

j=0 J 3 j=0 J J

n-1 f
A = « r • n • V

,

X
(r) (g 1 )g 1

where 5 rs
=

I
1 (r=s)

rs
fifo

J j
1° (r?* s)

is the Kroneker Delta function.
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Proof:

j=0 J J j=o J J

" ft'"* <«,)«, + J?x
M

<Mjx
M

<Mft.t1 + ...

j-o J J j=o J A J x

- +&r)
(S

j
)x

(8)
(8n.1)8j gn.1

Consider the coefficient of g, for arbitrary k:

«k - x
(r)

(8k) + x
w(^) x

(s)
(gl ) + ... + x

(r)
(^lgk)x

(s)
(
gn.i)

= x
(r)

(gk) (l + x
(r)

(g"Vs)
C
8l

) + ... + x
(r) (g-^) x(s>(gnl

))

= [G:l]5 x (gk^ ^y equation (5) of Appendix A.

Summing over all group elements yields

:

1=1
= n6 ) x (g.)g. as required.

rs <->

j=0 3 J

Theorem 3.5 : Let K = Q(n) (n a d root of unity) be a splitting field

for G, a finite Abelian group. Let u , ..., u as defined in

theorem 3.3 be the generators of TU(KG). Then:

a) (u ) = 1 - (1 - n )/n>
j x (gJg-j (2)

j=0
J J

b) u
(r)

u
(s)

= 1 (1 - n)/n£ ( X
(r)

(g,) + X
(s)

(g,))g, (r + s) (3)

j=0 J J J

c) a- (u
(0)

)
ko(u (1)

)
kl...(u (n-1)

)
kn-l

= 1 - l/n^C^ (1 -n
ki)X (i)

(g,)}g. (*)

j=0 i=0 J J

<k » k
o. ••- kn^l d-1).

Proof:

a) By induction on k. If k = 1, then the form is just that of u' r '.
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Assume the equation is true for k-1. Then: (u' r ')'c = (u(r '
)k-lu

' r '

= (l-d-Ti^/n^x^CgJgJd-d-nJ/nr X
(r)

(g.)g.)
j=0 J J j=0 3 J

= 1 - (l-n^/n^x^CgJg. - (l-n)/nr X
(r)

(g.)g.)
j=0 J 3 j=0 J J

n-1
+ (Md-n^/n^n^x^CgJg )

j=0 J J

the final term being obtained by application of lemma 3.4.

(u
(r)

)
k = i _ i/n ^x (r)

(g.)g.[(l-n) + (l-n
k_1

) - (1-n) (l-n
k_1

)

]

j=0 3 J

n-1
= 1 - (1 - n )/nV X (g )g as required for part a.

J=o J J

b) u < r >u< s > = (1 - (l-^/n
1^

x

(r)
(g )g )(1 -(H)/n[ X

(s)
(g )g )

j=0 J J 3=0 J J

n-1 n-1
= 1 - (l-n)/n£x (r)

(g.)g - (l-n)/nr X
(s)

(g )g
j=0 J J j=0 J J

+ (l-n)/n£x (r)
(g.)g.l]x

(s)
(g.)g..

j=0 J 3j=0 J J

By application of lemma 3. A, the final term is zero when r ^ s, and

hence by collecting coefficients of each g. we have the required equation

for part b.

c) We shall prove part c by an induction argument on the number of

generators which are raised to a non-zero power. There is no harm in

renumbering the generators so that the first t of them are raised to a

non-zero power while u^
t

» ••• u'n-1 ^ are raised to the zeroth power and

are hence equal to one. Then if t = 1, the assertion is true by part a.

Assume part c is true for t-1. Then if
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u = (u (0)) ko...(u( t- 1 )) kt-l(u ( t )) kt

* (1 - 1/n^ {£ (l-nki)x (i) (g )>g )(«<t>)kt

j=0 i=0 ^ J

n-1 t-1 n-1
= 1 - 1/n T {T (l-r^i)X^>(g )>g )(1 - (l-nkt)/n£ X(t)(g ) g )

j=0 i=0 J J j=0 3 J

= 1 - l/n£ {£ (l-nki ) x
(i)

(g.)}g. - l/n(l-n
kt)

X
(t)

(g.)g.,
j=0 i=0 3 3 3 3

the cross-product term being zero by lemma 3.4. Hence

u * 1 - l/njj {T\ (l-nki)x' i)
(g ) >g as required.

j=0 i=0 3 3

Corollary : If G is cyclic of order m, and C is a primitive m root of

unity, then parts a, b, and c of the theorem become:

(r)^k _
J- - V-L— 'I //"J

r \ r \ m~i
b) u

(r)
u
(s)

= 1 - (l-n)/m£ (^ + C
SJ

)g
J

3=0

a) (u^) k
= 1- (l-n*)/m£ S

rV

c) u = (u(°)) ko...( u (n- 1 >) kn-l

m-1 m-1
= 1 - UmViT (1 - 11*1)5^ gJ

j=0 i=0

Proof: Let G be generated by g. Then the characters, \' r '(gJ
) are given

by x'
r '(g-*) - C

r^« Substitution in the theorem yields the required results.

Theorem 3.5 completely describes the elements of TU(KG) when K is

a splitting field for G. In particular, the n elements u'*' (i = 0, ..., n-1)

are the generators for TU(KG). We next expand the theory to group algebras,

LG, where L is not a splitting field for G. We will find generators
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v^ ), ..., v^-1
' for TU(LG) and prove that each v^ is of the form

ft(" (J)
)
kJ.

Since L is a field, LG is semi-simple, and so is isomorphic to a

direct sum of simple rings, say:

**:LG -> Lq ® ... ® Ld-1*

Furthermore, these rings, L (r = 0, ..., d-1) are themselves fields.

As before, we shall denote the minimal splitting field for G containing

L by K. Clearly LG C KG, and the embedding is simply inclusion. Also,

we have the isomorphism

$: KG - Kn

We wish to define an embedding:

0: Ln ® ... « Ld_]_ -> Kn which will make the diagram

9
Ln ® . . . €> Lj_i • K

$ f 1

LG KG

commute. The embedding must thus satisfy:

0**» =*| LG
.

By theorem 3.1, the generators of TU(LG) are given by

d-1 considered as elements of L~ # ... LLUUSIUCICU da CXCUJCULS UJ. i-//-> W ... W Lij_i >r r=

where $_ is a primitive root of unity of maximal order contained in L

and each component of the r th generator is 1, except for the r th one.

To determine the form of the generators as elements ) a±&± *n LG, we

i=0
must either determine * J or determine 0, whence

v(r) a *•-!(!,. ...6r , !,...,!) = *~ l OU 6r ,l,. . . ,D)
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Now $ is known and was used in the previous work, and it turns out

to be more straightforward to determine © than $'. This is the course we

shall follow.

Higman's theorem 1 (4) shows the form of the direct sum decomposition

of LG in that both the value of d and the structure of each L is exhibited.

In the course of his proof, he also constructs the required embedding 0,

albiet somewhat obscurely for our purposes. In what follows, we have

restructured his theorem and proof so as to clearly exhibit the required

embedding.

We must work simultaneously in four rings, and the notation is

not straightforward. It can be simplified and clarified somewhat by

recasting some previous work in terms of matrices. For any ring R, and

a finite group G, we may consider an element a - ) a.g. in RG as an

i=0
n-tuple A = (cxq,..., ol_i) in Rn , where addition is componentwise

addition, and multiplication is a convolution, with the convolution

rule established by the multiplication table of the group. Let, now, G

be finite Abelian, and R = K, a splitting field for G. Let

B = (3q, ..., 6n_i) be the image of a in the direct sum decomposition of

KG - Kn . It is easy to verify that equations (2) of Chapter II may be

replaced by the matrix equation

A = B (l/n)X where (5)

X= /X (0)
(8 ) X^Cg^)

(n-1), v ' (n-1);
X (g ) X vSn-l^
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Similarly, equations (1) of Chapter II become the matrix equation

B = A X
T

(6)

—

T

where X is the conjugate transpose of X.

Now let ir be a permutation of (0, ..., n-1) . It is obvious that

if it is applied to the rows of X and the columns (components) of B in

equation (5), that the vector A is unchanged. We observe that this fact

permits the assigment of arbitrary indices to the characters of G so

long as the corresponding indices are assigned to components of B.

Let K = L(c) be a minimal splitting field for G containing L.

Hence ? is a primitive mth root of unity (m = exp G) . Let G(K/L) be

the Galois group of automorphisms of K leaving L fixed. The effect of

any a e G(K/L) on a root of unity of K is to map it to another root of

unity of the same order. Then if x is one °f tne characters of G,

a(x ) is also one of the characters of G.

Suppose a(x ) = X • We denote the effect of a then, by saying

a(x ) =X , that is, by defining a(i) = j. This notation is

convenient, but one must be careful to remember that i,j in this case

are not to be considered as elements of L or K. Indeed, i,j e z/(n).

We define a relation, conjugacy , among the characters of G by

defining x to be conjugate to x if there is a a e G(K/L) such

that a(i) = j. Clearly, conjugacy is an equivalence relation, and hence

partitions the class of characters of G into classes which we shall denote

Crt*
•'••» Cd-1* ^e wiH show that the number of classes is, in fact, the

number of fields in the decomposition of LG. In anticipation, then, we

use d as this common number.) We let cr be the cardinality of Cr .
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Since we are free to index the characters of G at will, we do so

as follows:

Let Cq be the class containing the trivial character, x(gi) = l(j < n-1)

and denote it x • It is trivial that for no a e G(K/L) does

a(x )
= X (i=l, . . . ,n-l) and so c = 1. Let C, be any conjugate class

other than C
Q

and index any character in C by x
'

. If there remain

unindexed characters in C-. , index them sequentially x , • • • , X
°^~

•

Having indexed all the characters in C ..,C ', let Cr
be any class

containing unindexed characters. Choose any character in C and index it

X . Index the remaining characters in C by x » • • • > x
r where

j = (d +
2_,(

c - ~ 1) N°w let 5 be the set of indices of characters in C :

i=l
1 r r

5 = {0}

5
1

= {l,d, ..., (d-1) + c -1}

S
d-1

=
{d-1 ; d+(c1-l)+ . . . + (c

d_ 2
-l) ; . . . ; (d-l) + ( Cl-l) + . . . + (c

d_f l) }

As a final preparatory remark, for a e G(K/L) , Y an arbitrary finite

dimensional matrix, Y = (v -?-j); y
-n e K » we define a(Y) = (a(y. .)).

n-1 J J 1J

Lemma 3.6 : Let a = V a^g± e KG; B = (ft,
, B -j)

= $( a )'

i=0 ° n~

Then a e LG if and only if for every a e G(K/L) , a permutes the components

of B, OB = ttB, where tt is that permutation satisfying OX = ttX.

Proof: Suppose a e LG and write A = (a
Q , ..., a _, ) . Since a. e L,

(i=0, ..., n-1), a (A) = A. Hence:

(A) = A = a (B) a (l/n)a(X).

By the prior discussion, a(B) = tt(B).





24

Conversely, let o(X) = tt (X) and suppose that a(B) =
tt (B) . Then:

a(BX) = a(B)a(X) = Tr(B)Tr(X) = BX.

Hence a (A) = (l/na(BX) = (l/n)BX = A. Since a was chosen arbitrarily, we

have that a(a.) = a. (i=0 » •••» n_1 ) for every a e G(K/L). Hence

a^ e L and a e LG.

Let E generate the image of x ' (r=0, ..., d-1) . Clearly £

is an m"1 root of unity, and in fact, for at least one r, £ r is a primitive

m*-" root of unity. For there is a g e G whose order is m. Write

G - <g> x G' and consider x = G * K by x(g) **" CJ x(g') *+ 1 (g' e G').

Then Im x is generated by £ and x is one of the characters of G. z, is a

primitive m*-" root of unity since g' has order m. This proves the last

part of:

Theorem 3.7 (Higman) : Let x » •••» X be a complete set of mutually

inequivalent and with respect to L, non-conjugate characters of G. Then:

LG ~L_ © . • . wL. id-1

and there is an algebra monomorphism

6: L # ... ft L
d_1

-* Kn ; (L
r

- L(^
r ))

given as follows:

Choose for each _< i <_ n-1, a fixed x. e G(K/L) such that

Ti (i) = r if i e S . H < i < d-1, let Ti = id. Let A = (A^) be

the d x n matrix of automorphisms A . . = fid (j e S,

(otherwise)fr

Let E be an n x n diagonal matrix I = diag ( Ti). Then

« Z o A

(Observe that the rows and columns of the matrices E and A are numbered

from 0)
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For at least one r, £ is a primitive mtn root of unity.

Proof: We define the follow;:';; notation: Let b.. be an element of a

field, and let B. be the vector (b . , b., ..., b.) of length c-1.
' i 1' x' ' i x

Then the vector (bg, . .., b d _j . B-j , ..., Bj_ 1 ) is defined to be the

juxtaposition of the vectors (bg, ..., b, -,) with the vectors B-^, ..., Bd_2«

Nov let (bg, ..., b d_]) e Kd . Then

n
A: (bg, ..., b

(]
..

;l
) •-> (b

Q , ..., bd_1 , B
l5

..., B
d _ 1

) eK .

d n
clearly then A e Hom^ (K , K ) and is a monomorphism.

n n
Similarly, it is clear that X e HomK (K ,K ) . To show that each are

algebra homoraorphisms it is necessary to verify only the preservation of

ring multiplication. Let (b„, ..., b , , ) and (b' , ..., b',., ) e K . Then

A(b , ...; b^xbj, ..., b^
2

)

.- A(b
o
b ;» -. Vib

d-i)

•

=
<b

o
b
c>

'••' b
d-ib d-r B

i
B
i>

•••> ViB
d-i>

= (b
Q

, ..., b
d_r- Blf ..., B

d
.^XbQ, ..., b

d-1 , B
Q
,..., B^)

= A(b , ..., bd.^ACbJ, ..., bd_x )

Similarly, let (b , ..., b , ) and (bA, . . . , b' , ) e K Then
J ' 0' n-1 n-1

v(b
Q

, ..., b
n_ l)(

bl, ..., b;_
x )

" ^ b b 0> ••> bn-lbn-l>

- ^OW' •••>Vl (b
n-l

b
n-l

))

= (T (b ) To (b ), ....T^Cb^T^Cb^))

= (T (b ), ....viVi^^o^' •••»vi (b
;-i

))

- E(b
Q

, ..., h^pKhi, ..., b^).

Let = Y.o[\. Then is an algebra hompmorphism

0: K
d

h. K
n

and is clearly a monomorphism. it remains to show that LG - L~ <J> ... # T,
a._i
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n-1
Let a = £ aig± E LG C KG and let

1=0

*(a) = (3 , ..., gn_1) = B

Now since a. e L and x'^(g.) =
£
k for some integer k, it is clear that

3j e L(£-t) for each i j< n-1. By lemma 3.6, a e G(K/L) permutes the

components of B. We fix an index, i, and consider:

n-1
-JJ)

B i
= £ a

i
x ( 84). Then

J =0
J

T
I
1(e

i
}

= r
l
1(%a

3

xTir^)

' t
L

«
J^

1
(x

(1,
(g

j
))

j=0
J J

and since x e C for some r <_ d-1, it follows that

t^CB.) = B
r

- Hence E~ (B) = B f = (b q , ..., & d_v Blt ..., B^)

.

Furthermore, since Im x = Im X » $± and B r e L (C r
^-

Hence Z"1 (*(a)) e A (L • . . . • L^) •

Conversely, let D = (b
Q
,..., b

d_ 1
) e K£ ) • ... • Us^).

Then A (D) = (b
Q , , b, ,, B,, ..., B, ,) e K . Now

Z(A(D)) = (s » •••» 6 n_i>
where Q ±

= \b
±

(i < d-1)
[^(b^ (d <_ i _ n-1)

Let a £ G(K/L) and suppose that a (i) = j. Now x . (i) = r;

-1

(j) -

-1

t. (j) = s where r,s ^_ d-1; by our definition of the x..

Consider t ax^ e G(K/L). Obviously t~ ot (r) = s, and so x^ is conjugate

(s) -1
to x Since r,s <_ d-1 we have r = s. But x- ax. leaves L fixed, and

(r)
Im x

v

<£r
> fixed, hence leaves L(£

r
) fixed. Since b e L(£ ), then,

-1
Tj otiCbj.) = b

r
and so ax.(b

r
) = x.(b ).

But T^(b
r ) 8^5 x.(b

r
) = 6j and so a(B

i
) = B... Thus a permutes components

of EA(D) e Kn . By lemma 3.6, then, *~1EA(D) e LG.

Hence we have shown a 1-1 correspondence between
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elements of LG and elements of L(Cq) 9 ... 9 LiE.^]). By the discussion

preceding the theorem each C_ Is an m root of unity and at least one

of the £r is primitive.

Theorem 3.7 enables us to compute the generators of TU(LG). Let 6

be a root of unity of minimal even order s, which generates all roots

of unity contained in L. Let £, as usual be a primitive m*-™ root of unity,

and let n be a primitive root of unity of order t = LCM(m,s). Then K = L(n)

is a minimal splitting field for G containing L. In the following, we

retain the notation introduced in theorem 3.7.

Theorem 3.8 : Let L be a field, G an Abelian group of order n; and let

K = L(n), be the minimal splitting field of G containing L. Let

X , ..., X De tne complete set of non-conjugate characters of G

with respect to L, and let X » *••» X be the remaining characters

of G. Let u' 1', (i=0, ..., n-1) be the generators of TU(KG) . Then the

(r)
generators v (r=0, ..., d-1) of TU(LG) are given by:

vw = TT (u
(i),M

ieS
r

where k^ is determined as follows: If LG = L (Cn ) + ... + (Cj_i):

Cr
= nkr and T

i chosen as in theorem 3.7, then for T (X ) = x »

T
i

(V =nki
-

Proof: By theorems 3.1 and 3.7 we know that if v^ 1"), r = 0, ..., d-1

are the generators of TU(LG);

** (v
(r)

) e LU ) + ... + L(Cd-1),
and

* (v
) = (c , 1, ..., 1)
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*'(v (1)
) = (1,C

1
, 1, ..., 1)

'(v^) + (1, ..., 1,
?a 1

)

where each £ is of even order. Since £ e K = L( n ) and so £ = n r

for some integer kj. we can in fact write:

$'(v
(r)

) = (1, ..., 1, n
kr

, 1, .-., 1) where v
kr

is in the r
th

component. Now $'(v ) = ^(^ ) and hence v^
r

^ = $~ $'Cv
rO

—1 (r)
and we need only calculate $ $'(v v ').

Let v
r

= $»(v
(r)

) = (1, ..., n
kr

, 1, ..., 1). Then

A(vr ) = (Bq, — , 3n_i)
where 8

i
= 1 if i £ S , and 6. =n

r if i e S
r ; and

$'(v (r)) = ZA(v ) =
( (e ) . T (6 )

r n-1 n-1

n-1
= TT(1» •••» 1, t.(8.), 1, ..., 1)

i=0

where t.(B-) =li Ti (l) = 1 if i £ S
r ;

kr
5

r
= n if i e S

r
and i < d-1

x.(n r
)

= n ifieS and i > d.
i ' r —

l k-
Clearly, if i _> d, then n

1 is a root of unity of the same order as

n r when i e Sr .

(r) -i—

r

k- ki
Thus, 0<J>* (v ) = (1, . . . , 1, n 1

, 1, . . . , 1) where n is in

the i ch component and all other components are equal to 1. But by theorems

3.1 and 3.5,

*
-1

(l, ..., n
ki

, 1, ..., 1) = (u
(i)

)
ki where u (1) is a generator of

TU(KG). Hence

v (r) = <jrl0*'(v< r )) = T(u (i)
)

k i.

les
r
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An application will serve to make concrete the results of this

chapter. Let G be the direct product of the cyclic groups of order 3

and of order 2 2 = 4; G = C3 x C4. Although G is itself cyclic, we

compute the characters of G from those of C3 and C4 for illustration.

In the computation we have indexed the characters according to the scheme

outlined previously. Let C3 = <h>. Then its characters are:

^'(0). ft h- 1 (where 6 is a cube root of unity)

x
,(1)

: h » 6

v»<2>: h - 6
2

If C, = <k>, then its characters are:

x' : k ** 1 (where is a fourth root of unity)

X
,,(1)

: k h-

X
" (2)

: k h.
2

X
" (3)

: k - 3

Now exp G = 12, which is even, so let n be a primitive 12 " root

of unity. Then 6 = n ana< = n • The characters of G are found by taking

all possible products of the characters of Co with the characters of C4.

The computed values of the characters of G are listed in table 1.

Let us find the generators of TU(QG). The minimal splitting field for

G containing Q is Q(n) = K and the automorphisms in G(K/Q) are listed in

table 2. To read this table, find the exponent k of n in the first row.

The exponent of a.(n ) is found at the intersection of the i+lst and the

k+lst column.
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7 2

11 10
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TABLE 2

THE AUTOMORPHISMS OF G(Q(n)/Q)

3 4 5 6 7 8

3 8 1 6 11 4

9 4 11 6 1 8

9 8 7 6 5 4

9 10 11

9 2 7

3 10 5

3 2 1

c =(x

C - {y(D

It is a trivial verification that

(0)

C2 = (X
(2)

(3)

x
(4)

c
3

= { x

c, - (x
(5)

X (6) = a x<D, X< 7 > = a X(D, X< 8 > = * xCD>12 3
(9) (2).

X - ^
3
x >

x
(10) . (3)

}

(11) = a x
(4)

}

and that c = 1, S
Q

= {0}; Cj = 4, S
1

= {1,6,7,8}; c
2

- 2,

S 2
= {2,9}; c

3
= 2, S3

= {3,10}; c
4

= 2, S
4

= {4,11}; and c
5

= 1, S
5

Furthermore, Image x = <-l> = Image x » Image x <n>; Image

/,\ o (3) 3 (4) 4

X^
; = <n >; Image X = <n >; and Image x = <n >•

Hence QG = Q $ Q(n) $ Q(n 2
) # Q(n 3

) # Q(n*) $ Q, and there are six

generators of TU(QG):

= {5}

*'<v<°>

(J>»(v(
2 )

<J)» (v (3)

*. (v (4)

*'(v (5)

= (n
6

, 1,1, l,l,l,)

« (l,n,l,l,l,l)

= (1,1,

n

2
, 1,1,1)

= (l,l,l,n3 ,l,l)

= (l,l,l,l,n\l)

= (1,1,1,1,1,

n

6
)
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Application of to each ^'(v^
rO yields:

v = (n
6

, 1,1, 1,1, 1,1, 1,1, 1,1,D

v
x

= (l,n,l,l,l,l,n 5 ,n 7 ,n11 , 1,1,1)

v
2

= (l,l,n
2 ,l,l,l,l,l,l,n

10 ,l,D

v
3

= (i,i,i,n
3 ,l,l,l,l,l,l,n

3
,l)

v
4 = (l,i,i,l, n

4
,l,l,l,l,l,l,n

8
)

v
5 = (l,l,l,l,l, n

6 ,l,l,l,l,l,D

and it is immediate that the generators of TU(QG) are:

v
(0) = <»<°>) 6

v
(1) = Cu<»H« (6)

)
5

<u<
7V (J 1)) 11

v
(2)

= (u<
2 >) 2

(u<
9)

)
10

v
<3) = (u<

3))V 10V
.<*) . ,..(4K4,..(11K8

v
(5)

= (u<
6>) 6





APPENDIX A
RESULTS FROM GROUP REPRESENTATION THEORY

In this appendix are collected various definitions and results

from the theory of group representations which are used in the work of

the paper. The theorems on group representations may be found in Curtis

and Reiner (2). The discussion of group characters follows van der

Waerden (7). In order to simplify the presentation, some theorems are

proved in this appendix only for the case of finite Abelian groups;

these theorems are applicable in greater generality.

GROUP REPRESENTATIONS

Definition : Let G be a group and M a finite dimensional vector

space over a field K. A representation of G with representation space M

is a homomorphism T:G -* GL(M) , where GL(M) is the group of units of

Hom^(M,M) . Two representations T and I*
1 with representation spaces M

and M' , respectively, are called equivalent if there is a K-isomorphism

S:M -> M' such that r'(g)S = ST(g) , that is, r»(g)S(m) = S(r(g)m) for

every g in G, and m in M.

Definition : Let A be an algebra, finite dimensional over K. A

representation of A with representation space M is an algebra homomorphism

T:A + HomK (M,M) that is, a mapping T which satisfies:

T(a+b) =T(a) +T(b); T(ab) = r(a)T(b);

T(aa) = a(Ta); T(e) =1 a,b e A; a e K
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Two algebra representations T and T' with representation spaces

M and M' respectively, are called equivalent if there exists a K-

isomorphism S:M -* M' such that r'(a)S = ST (a), aeA. It is readily

verified that KG is an algebra over K.

Theorem A.l : Every representation T of G with representation space M

can be extended uniquely to a representation T* of KG with representation

space M. Conversely, every representation T* of KG yields a unique

representation of G.

Proof: Given T:G -* GL(M), let

r*(£a g) = £a r(g) a e K ; g e G
g 8 g 8 8

Since GL(M) C Hom
K
(M,M) and Hom^(M,M) is an algebra over K

t_» a T(g)e Hom^(M,M). Preservation of addition and scalar multiplication

are trivially checked. Consider

r* (Eagg)(Eeg
g) = r*§^ Vt-ig8)

=
Xt a

t
Bt-lgr( 8 )

=£a r(g))(L r( g ))

= r*(Lg)r*(Le)

Conversely, given F*, let T = r*(l*g), g e G.

Uniqueness of both constructions is obvious.

Definition : Let N be a K-subspace of a representation space M,

and let T:G -» GL(M). N is called a G-subspace of M if T(g)n e N for

every g e G; n e N.
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Remark ; If we define TjCg) = T(g)
| N for every g e G, then r^G -> GL(N) .

Definition : Let T:G -» GL(M) and r*:KG -* HomK (M,M) be its corresponding

representation of KG. We call a K-subspace N of M a KG-subspace if

T*(a)N C N for every a e KG. Clearly N is a KG-subspace if and only if N

is a G-subspace.

Definition ; Let G be a group and M an additive Abelian group. The

group M is called a left G-module if for each g e G; m e M, a product gm

is defined such that

g(m+m') = gm+gm'; (gg')m = g(g'm) ; em = m

for every g,g' e G; m,m' e M.

Theorem A. 2

:

Let KG be the group algebra of a finite group over a field

K. Then there is a 1-1 correspondence between the K-representations of

G and the left KG-modules M. Two left KG-modules are isomorphic if and

only if the corresponding representations are equivalent.

Proof: Let r :KG * HomK
(M.M) and for each a e KG; m e M, define am = r(a)m.

Then clearly:

a(m+m') = am+am' ; (a+a')m = am+a'm; (aa')m = a(a'm);

em = m; (aa)m = a (am) = a(am) a,a'eKG; m,m'eM; aeK

Thus r has made M into a left KG-module.

Conversely, let M be a K-subspace which is a left KG-module.

For each a e KG, define:

T(a): M + M by T(a)m = am

Then it is readily checked that r is a representation of KG.

Definition : A KG-module M (^ (0)) is called irreducible if M

contains no non-trivial submodules, otherwise it is called reducible.
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It is indecomposable if it is impossible to express M as a direct sum

of two non-trivial submodules, and is called completely reducible if

every submodule of M is a direct summand, tbat is, for every submodule

N of M, there is an N' such that M = N N'. KG representations are

called irreducible, reducible, indecomposable, and completely reducible

according as to their corresponding KG modules.

Let L be an extension field of K and let A be an algebra over K.

Then if T is a K-representation of A, it is obviously an L-representation

of A. Let A^ he the L-linear combinations /l^a^ of the elements of A.

Then A^ is an algebra and T may be extended to an L-representation of A^

by setting:

Definition : Let A be a K-algebra and V an irreducible A module. We

call V absolutely irreducible if VL is an irreducible AL- module for

every extension field L of K.

Definition : An extension field L of K is called a splitting field for

G if every irreducible KG module is absolutely irreducible.

Definition : A ring has the minimum condition if it satisfies the

descending chain condition (D.C.C.) on left ideals, that is, if every

chain of left ideals Ii 3 I 3 . . . terminates in the sense that there

is a j such that Ij = I- +1
= •••

Theorem A. 3. (Maschke) : Let T:G * GL(M) be a representation of a finite

group G by linear transformations on a vector space M over a field K,

and assume that char (K)
"f

[G:l]. Then T is completely reducible.
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Theorem A.

A

: Every algebra A, finite dimensional over K has the minimum

condition.

Proof: For a e K and b e A,

ab - a(l)b, and

(al)b = a(lb) = a(bl) = b(al), (2)

Hence the set of elements Kq = {alraeK} is contained in the center of A

and is a field isomorphic to K. We identify K and K
Q

. Then (2) shows

that every left, right, or two-sided ideal in the ring A is also a

K-subspace of the vector space A. Since the subspaces of a finite

dimensional vector space satisfy the D.C.C., it follows that the left

ideals of A do also.

Definition : A ring is said to be semi-simple if it satisfies

the minimum condition, and if Rad R = (0), where Rad R is the sum of

all nilpotent left ideals I of R, that is, all left ideals I for which

Im = (0) for some m. A ring is simple if it contains no non-trivial two-

sided ideals.

Theorem A.

5

: A ring R which satisfies the minimum condition is semi-

simple if and only if every R-module is completely reducible.

Proof: See Curtis and Reiner (2) pp 164-6.

Theorem A.

6

: Let G be a finite group and K a field such that char K

T[G:1]. Then KG is semi-simple.

Proof: This is immediate from Maschke's theorem (A. 3) together with

theorems A. A and A. 5.
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Theorem A.

7

; Let R be a semi-simple ring, and let L be a minimal left

ideal of R. The sum Br of all the minimal left ideals of R which are

isomorphic to L is a simple ring, and a two-sided ideal of R. Furthermore,

R is the direct sum of all the ideals B, obtained by letting L range

over a full set of non-isomorphic minimal left ideals of R.

Proof: See (2) Theorem 25.15.

Theorem A. 8 (Wedderburn) : Let A be a simple ring with minimum condition.

then A - HomD (M,M) for some finite dimensional right vector space M over

a skew-field D. The dimension (M:D) and the skewfield D are uniquely

determined by A.

We next determine an upper bound on the number of irreducible

representations of KG. Let K be a field, A an algebra over K with unity

element. Let M be a lef t-A-module. Then M is a vector space over K if

we define:

am = (al.)m a e K; m e M

and assume that (M:K) is finite.

For each a e A, let aL : m •* am m e M. Then a^ e Hom^(M,M) , and

the map a * a^ is a homomorphism of A onto A^ = {aL :a e A}

Now ^ is a subalgebra of Hom^M.M) . M can be viewed as a left A- module,

and the subspaces of M which are A-submodules are precisely the same as

the subspaces which are At -submodules.

AL is a finite dimensional algebra over K even when A is not, and M

is a faithful AL module, that is, no non-zero element of At annihilates M.
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Consider D - HomA (M,M) . In (2) p 180 it is shown that DC HomK (M,M)

and is a subalgebra of HomK (M,M) . Hence (D:K) <_ (M:K).

Theorem A. 9 (Schur's Lemma) ; Let A be a finite dimensional algebra over

an algebraically closed field K, and let M, N be irreducible A-modules.

Then HomA (M,N) = (0) if M and N are not isomorphic, whereas HomA (M,M) = K'l^.

Let A be a semi-simple algebra which is finite dimensional over K as

a vector space. Then all left, right, and two-sided ideals of A are

K-subspaces of A. Let M,, ..., ^ be a full set of non-isomorphic left

ideals of A; each MA is then a finite dimensional vector space over K.

Let D = HomA (M^,M^) . Let A-^ denote the simple component of A containing

Mf. Then Mi Is a faithful irreducible A^ module and

A±
= HomD (i)(Mi ,Mi).

Define u^ = (M^:D ). Then A^ - D , a full matrix ring over the division

algebra D^ 1 ^. A^ is a direct sum of u^ copies of M^:

A = A,- e . .. e A_ A,- s D
(

l *n x ui

and M^ may be taken to be a minimal left ideal in the simple ring A.. It

is shown in (2) p 185 that

n

C_
i=l i

If K is algebraically closed it follows from Schur's Lemma that each D^ 1-^

(A:K) = £uj
(D

(i)
:K).

coincides with K so

A = A,

Furthermore, M
i

occurs with multiplicity u. in the decomposition of

A into a direct sum of minimal left ideals.

ij, • ... # Ag A
i

~ K
u

»
u
i

= (M.:K).
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Let [G:l] n, and let K be algebraically closed. Let M-p ...» M

be a full set of non-isomorphic KG-modules. Then KG - A^ $ . . . 6> Ajj*

where the A^ are the simple components of KG and A^ - K , with u^ = (M^:K).

Also KG contains Uj_ copies of M.j> in its decomposition into minimal left

ideals. Hence

r* 2
[G:l] = ) u^, since KG has K-dimension [G:l].

Theorem A 10 : Let G 1 e a finite group and K an algebraically closed

field such that char K
|

[G:l]. Then the number of non-isomorphic

irreducible left KG-modules is the same as the number of conjugate classes

of G.

Proof: Since the rings A. annihilate each other we have

center KG - (center A^) 9 ... 9 (center A^

.

Now A. - Ky and since the only matrices which commute with all matrices

in the full matrix ring K^, are scalar multiples of the identity matrix,

(center A. :K) = 1
l

Hence n = ((center KG) :K) . Let Gj_, ..., 6
g

denote the conjugate classes

of G and define c^ = 2_i§* ^he following theorem yields s = n, and proves
geGi

our required result:

Theorem A. 11 : Let K be an arbitrary field. The elements c^ form a K-basis

for center KG.

Proof: Cj e center KG since for every h e G,

hc^"1 = £hgh~ = c i*
geGi

{c.} are clearly linearly independent since each g is an element of the
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sum of only one c . . For each h e G,

£a
g
g - y - hyh' 1 = £ ^ngn"1 from which V igh

- «
g

. g e G

Then a a » whenever g, g' are in the same conjugate class. This
© ©

shows that y is a K-linear combination of the c^«

NOTE : When K is not algebraically closed, the above two theorems

still yield that the number of non-isomorphic irreducible left KG-

modules is less than or equal to the number of conjugate classes of G.

Then the equivalence of KG-modules and representations establishes the

desired upper bound on the number of irreducible representations of KG.

GROUP CHARACTERS

The results of this section are taken from van der Waerden (7) .

The results are applicable only to finite Abelian groups, and are used

in the paper only in that context. A more general development of the

theory of group characters can be found in (2) Chapter V.

Let G be a group and K a field. A character of G in K is a

homomorphism x : G "*" K*» where K* is the multiplicative group of K.

Let G be cyclic of order n, say G = <a>. Let x( a )
= £

Then g £ G implies that g = a^ for some j _^_
n-1, and so X(g) = d . Since

an = e, we must have that C
n = 1» showing that z, is an n th root of unity.

Now if K contains all n tn roots of unity and char K f[G:l], then there

is a character x :a "** 5 where ^ is a primitive n root of unity. It is

easy to see that all characters of G must be a power (j=0, ..., n-1)

X^ of x and that the set of characters of G (x^ : j=0, ..., n-1} forms

a cyclic group of order n, and hence isomorphic to G.
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Now let G = H, x ... x H be the direct product, of s cyclic groups

Hi of orders n^. Let r, ± be primitive n. roots of unity. Let H
i

= <a >.

th
If X is a character of G, then x(a i) is an n^ root of unity for each i,

. . k
and therefore, x(a^) = ^i for some k.. But since g e G implies that

g a^l...a
Z
s we have that x(g) = x^i 1

) • • «x(
aZs

)IS AS
Now each k. may take any of the numbers 0, ..., n.-l for its value,

and for each value we obtain a different character. Hence there are

n = ' ni distinct characters of G, each taking values in a field containing

a primitive root of unity of order LCM(ni, ..., ng ) . But this is exactly

exp G. The character group is thus a direct product of cyclic groups of

orders n-j, ..., ng , and so is isomorphic to G. By the Fundamental Theorem

of Abelian Groups, every Abelian group is isomorphic to the direct product

of cyclic groups. We have thus shown that:

Theorem A. 12 : Let G be a finite Abelian Group, G = H^ x ... x Hs « Then

the character group of G is isomorphic to G, and any character of G is the

product of s characters one from each of the character groups of

tl^
y

1 " i
J « • • J S *

If C is any n tn root of unity, it is well known that

1 + z, + X,
1 + ... + s

n 1
=/o (C t 1)

(^ = 1)

From this follows immediately the following relations, known as the

orthogonality relations of characters:

Ex.W " /" (a=e) (3)

k
k

\0 (ate)

Exk (a) = fn (k=0) (4)
z \0 (k^O)

2-.Xk (a)xk (b) = fn (a-b-1 )

k JO (otherwise) (5)
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£> Xk (a) X .(a) = n (k=j) (6)
a J (otherwise)

E Xk (a)xk (b) = n (a=b) (7)

k (otherwise)

Now let K be a field containing £, , • • • » C s
and G be an Abelian

group. Consider the 1-dimensional representations of KG; T:G + Hom„(K,K) - K.

Evidently, each character of G may be identified with a one-dimensional

representation end we have shown that G has [G:l] distinct characters.

Since G is Abelian, the number of conjugate classes of G is also [G:l].

SPLITTING FIELDS FOR ABELIAN GROUPS

Theorem A. 13 : Let [G:l] = n; exp G = m, and z, be a primitive mth root of

unity. Then K = Q(0 is a splitting field for G when G is Abelian.

Proof: All characters of G take their values in K. Since a character is

identified with each one-dimensional representation of KG, there are n

distinct one dimensional KG-representations and hence n distinct

non-isomorphic irreducible KG-raodules. By theorem A. 9, and the remarks

following it, the n non-isomorphic irreducible KG-modules have dimension

1 over K, and a complete set of one-dimensional representations has been

obtained. Since for any extension field L ^> K, the module extensions

are irreducible as LG modules, they are absolutely irreducible, and hence

K is a splitting field by definition.

Theorem A. 14 : An extension field of a splitting field is a splitting

field.

Proof: See (2) theorem 29.21.
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Let K be a splitting field for G, [G:l] = n. Then KG Kn . Write

A " L ai8i + (60» "" 6n-l> e
Ktl

-

i=0

Theorem A. 15 ; Let K be a splitting field of characteristic zero for G,

a finite Abelian group. Let Z. be a minimal ideal in the simple component

Aa of KG. Then A. = (KG)c. for a uniquely determined idempotent c. in KG

and
.n-1

c. = [G:irx y;x<J )
(g1)g1J

i=0

where x is the character afforded by Z..

Proof: Let KG = A« € ... # A - be the direct sum decomposition of KG

into simple components and 1 = c + . . . + c _, be the corresponding

decomposition of 1 as a sum of idempotents. Then c. annihilates A* for

k 4 j and is the identity element for A.. This proves that

Z, (c^) = 5.,I_ k where the underscore denotes a matrix; Z^ is the*k^i' xk-

matrix representation afforded by x 5 an<^ zt
= (A^:K) .

On the other hand, each g-j^
is a K-linear combination of the cj • Since

Zj^gi) = X
(k)

(gj) i(
zk) (see (2 ) p 235)

zk

it follows that

g±
= T * <£il ck < i < n-1

k=0 zk

But (A^cK) = 1 = z^, and hence

[G:ir1Ex"^)gi = [G:!]"
1 V X

(^ (g,) X
< k > (gi> ck£,<»<*

Z. 6jk ck
k

C
J

as required.
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n-1 n-1

Corollary ; Let A e KG, A = Y ot.g = T* g. c, . Then

n-1 fi\
aj = [GjI]'

1 £ 6iX (
8-i) J=0, ..., n-1 (8)

1=0 J

and
n-1 .

Bk
= £aiX

W
(g ± ) k=0, ..., n-1 (9)

i=0

Proof: Immediate by substituting values for the g. and the c and
J K

equating coefficients.





INDEX OF NOTATION

This index lists letters and symbols with fixed useage throughout

the paper. Arrangement is by Roman letters, then Greek letters alphabetically;

followed by expressions and symbols

.

C — The set of characters of G which are conjugate to % '

.

c — The cardinality of C.

.

Q — The field of rational numbers.

S. — The set of indices of characters in C-

.

UM —

.

a generator of TU(KG) where K is a splitting field for G.

v — A generator of TU(LG) where L is not a splitting field for G.

Z — The ring of rational integers.

r -- A representation of a group, G. r. denotes the value of p

atg..

6.. — The Kroneker delta function; 6-. = fl (i=j)
1J J

\0 (i*J)

£ — A primitive m " root of unity where m = exp G.

n — A primitive root of unity of even order. Q(n) is the largest
cyclotomic extension of Q contained in a given splitting field
for G.

— The monomorphism 0: Kd -> K
n by which LG ~ L

Q
$ ... ® Ld_ 1

is embedded in KG ~ Kn . © = z A

A -— The monomorphism A: K -> K given by the matrix ( \, . )

;

AjLj = id if x ( J } e C..
J

E — The isomorphism E: Kn - K
n

given by the matrix diag (t^)-

46
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T . -- The automorphism, j. e G(K/L) for which T .(i) = r; i e 5 .

$ — The isomorphism <j>: KG * Kn where K is a splitting field
for G.

$
f — The isomorphism $\ LG -> L_ 9 .

.

. © L^-l where L is not a
splitting field for G.

exp G — The exponent of G, the order of the element of G with maximal
order.

G(K/L) — The Galois group of automorphisms of K leaving L fixed.

GL(M) — The general linear group of a vector space M. GL(M) is the
group of invertible transformations in HonL. (M,M).

Im f — The set of values of a function f, contained in the codomain
of f.

TU(RG) — The torsion subgroup of the group of units of a group ring.

[G:l] — The order of the group G.

— The absolute value function; also, the cardinality of a set.

< > — The group generated by the elements listed within the brackets,

X"
-— The complex conjugate of a number or a complex valued function,

If X is a character of G then x"
= x •

— is a divisor of, as in a|b.

— is not a divisor of, as in a"|"b.

(M:N) — The dimension of M over N as vector spaces.

# — Direct sum
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