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Note on the Solution of Partial Differential Equations
by the Method of Reciprocation.

By JorN M‘Cowan, D.Sc.

In a paper ¢ On the Theory of Long Waves ” recently published,*
I drew attention to a point of some interest in the theory of the
solution of partial differential equations by what is usually termed
the method of reciprocation. As the subject was apart from the
main object of the paper, however, I there noticed the peculiarity
but briefly, and so I have thought that it might be of some use to
enter into the matter here somewhat more fully. On first adverting
to the point, it was my opinion that it could hardly have escaped
the notice of those who had made much application of the method
of solution by reciprocation, though I had not myself seen any re-
ference made to it; but as I have not had my attention drawn to
any such notice since the publication of the paper last March, it
seems probable that it has not previously been discussed.

The method of reciprocation, due, I believe, to Legendre, is so
well known that the following brief description may here suffice.
By changing the variables in the given equation from z, , and 2—
employing the usual notation—to p, ¢ and px + gy —z respectively,
say «, y' and 2’ for the sake of symmetry in the relations, a new
equation in &, ¥/, 7/, p', ¢/, 7', &, ¢ called the reciprocal equation, is
obtained, which may be easier of solution than the original equation.
Between the equations the following reciprocal relations hold, viz.,
xx' +yy' =z2+7%,0"=p, y=q, x=p', y=¢', and others between the
differential co-efficients of the second order, which need not be
written down. The equations are thus reciprocal to one another,
and from the solution of one that of the other may be obtained by
means of the preceding relations.

To these reciprocal relations a geometrical interpretation may
be given, which has the advantage of showing very clearly the nature
of certain limitations to which reference is about to be made. If
%, y, z be regarded as the co-ordinates of a point on a surface S,
then &, ¢/, 2’ are the co-ordinates of a point on a surface 8’ which is
the polar reciprocal of the surface 8 with respect to the paraboloid
of revolution &*+ 3*= 2z, and conversely. ‘

* Philosophical Majazine, March 1892,
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Consider first the process of reciprocation from the purely
analytical point of view, without reference to its geometrical signi-
ficance. In forming the reciprocal equation p and ¢ (written «’ and
y') are taken as independent variables, and therefore it is tacitly
assumed that p and ¢ are independent. There must therefore be
cases in which the method will fail to give, legitimately at least, the
full solution of an equation: in some cases, as, for example, that
discussed in the paper on waves, already referred to, the most im-
portant class of solutions is that in which p is a function of ¢. It
is true that when the general solution of an equation can be obtained
by this method, those cases in which p and ¢ are not independent
may be derived from it by considering them as limiting cases—
though it may not always be easy to do so—and the process might
be justified in the same way as in other limiting cases ; but it must
be remembered that it is by no means the same thing to prove that a
theorem holds true up to a limit, and to prove that it holds at the
limit. '

It is seldom, however, that the general solution of even the reci-
procal equation can be obtained in finite terms: generally only a
series of particular solutions can be obtained, or, if the reciprocal
equation is linear, a general solution made up from these. From
such particular solutions no solutions of the original equation in
which p=£(q) can be obtained, and from a general solution made
up from them such a solution could in general only be derived with
great difficulty. Hence, even though a logically rigorous method
be not insisted on, the method will generally fail in practice to give
this important class of solutions.

The nature of the restriction is made very clear by taking the
geometrical point of view. If a surface S is the locus of points
whose co-ordinates are so related as to give a solution of the original
equation, S may for brevity be said to give a solution of the equa-
tion : then its reciprocal 8’ gives a solution of the reciprocal equa-
tion. Now if p=f(g), 8 will be a developable surface, and its polar
reciprocal 8’ will degenerate into a line, the locus of the poles of its
tangent planes ; and conversely. But if 8’ is a line its co-ordinates
cannot well be spoken of as satisfying any partial differential equa-
tion, for p’ ¢’ 7 &' ¢ are essentially indeterminate. Thus, then, it is
clear that solutions of the type p=f(¢) can only be got by the
method of reciprocation by considering line solutions of the reciprocal
equation : such lines can only, of course, be regarded as giving solu-
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tions of an equation when regarded as limiting forms of surfaces
which give solutions.

The general conclusion following from these considerations may
therefore be thus stated :—The method of solution of partial differen-
tial equations by reciprocation can only be regarded as theoretically
complete when the deduction of solutions of the type which gives
2=/(g) as limiting cases of the general solution is fully justified :
but in practice, even though the theoretical completeness of the
method of reciprocation be assumed, it should be supplemented by
an independent investigation of solutions of the limiting type
»=/(g). It should be noticed that Poisson has given a method for
obtaining solutions of this type of a certain class of equations: a
class to which, it should further be remarked, the method of reci-
procation is generally very applicable.

In exemplification of the foregoing discussion, it is desirable to
add one or two examples.

Take first the frequently occurring equation

q°r — 2pgs +p*t=0... 1).
The transformed or reciprocal equation is therefore

%'+ 2x'y's + 4% =0 .. . (2),
of which the well known solution is
=gyl + Ly [x) ... .. (3).
. . , 82' ’ ’
This gives ac=p=W=1—%f'1—g,§ Sz e (4)-
,_ & 1
y=q —W—f'l'l'?f’: )

. z=xx'+yy -2 = —fy(y'[x) (6).
But (4) and (5) give
x+yy'[a' =f, ),

which, by means of (6) gives, changing the arbitrary functions,
2+ yFi(z)=Fy(z) ... v (8),

which is therefore the general solution of the given equation (1), but
may be more symmetrically written

2=wd(z) +yy(2) ... 9).
Next seek solutions of the type p =/£(g), by Poisson’s method.
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Regarding p as a function of ¢ in (1), it may be written
q*dp® — 2pgdp.dg + p*dg* =0 e (10),

whence gdp-pdg=0 ... (11)
. Ap=q (12)
z=F(z+Ay) ... (13),

the solution sought, and which it may be noted is what the general
solution (8) above reduces to when Fy(z)is taken=A, (or y=A¢
in (9)).

This example has been taken to show how the special solution
may be deduced as a limiting case of the general solution, when that
is known ; and to show also how easily it may be got by a direct
process. It is to be carefully noted that it cannot be derived from
anything less than a general solution ; it makesy’/a’ in (7) constant,
and so is not derivable from any true determinate solution of the
reciprocal equation (2).

Consider next an equation whose general solution cannot be
obtained in finite terms ; for example,

’ r-pit=0 ... (14).

Seek first by Poisson’s method the solutions in which ¢ and p
are not independent : on this hypothesis (14) gives

dy=p'dg*=0 ... (15)
dp +pdg =0 ... (16)
g= *logmp. (17)
z=ax tylogma-f(a))} (g

0=z  tyla -f(9)

Thus there are two sets of such solutions, got by taking the
upper or the lower signs throughout in (18), in which & may be
eliminated between the pair of equations, or retained as a variable
parameter, as may be most convenient.

These two sets of special solutions have thus been almost imme-
diately obtained by recognising directly the possibility of their
existence. Consider next what can be done towards the solution
of (14) by the method of reciprocation which may be said to ignore
such solutions,

The reciprocal equation is

%' -t'=0 .. (19).

This cannot be solved in finite terms, but
Z=Cxmev ... oee (20)
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is obviously a particular solution, provided that

m*=n(n-1) ... (21).
Hence the general solution of (19) is given by
2 =20, x™e, .- e (22),

in which all values of m and n may be taken, subject to the condi-
tion (21). To get the general (or any) solution of (14) from this,
the reciprocal relations between the equations have to be used.

Thus z=p'=3mCa™lew .. ..  (23)
y=¢'=2nC,a™ ¥ (24)
z=22 +yy -7 =2Cp(m+ny' - L)™' ...  (25)

These three equations (22), (24), (25), the condition (21) being
understood, may be regarded as together forming the general solu-
tion of (14), 2’ and %' being regarded as variable parameters, which
may in special cases be eliminated between these three equations if
found desirable.

Now in some limiting form these three equations will presumably
reduce 80 as to give the special solution (18), but it is not easy to
see in what particular manner. From (18), in fact, it follows in
virtue of the reciprocal relations, that

¥=p= a
Yy =q= *logma
Y =ax +yy -z=f(a)
whence y' = logma’ =F(z) ... e (26),

showing that the solutions of (19) which give by reciprocation
those of (18), are given by the lines determined by (26). It is
evident, however, that (26) can only in a very guarded sense be
regarded as giving a solution of (19) at all : it corresponds to none
of the particular solutions of the type (20), and it is not easy to
see how to get at it as a limiting form of (22).

Thus, finally, we see that it is practically impossible to arrive at
any of the important solutions included in (18), either in their
general form or as particular cases of it, by the method of reciproca-
tion. In the case considered, regarding (14) as referring to an
important problem in the propagation of sound, it may be said that
the case missed by reciprocation is physically the most important :
it is needless to multiply examples, but further instances may be
found in the equations of wave motion which are discussed in the
paper already cited.



On the use of Dimensional Equations.
» By W. Penbpig, D.Sec.

[A4bstract.]

The second la.w of motlon may be expressed as a dlmensmnal
equation in the form
1
f=mt7 (1),
where the meanings of the quantities are obvious.

If we cut out the factor m from each side, we may write this in
the usual form,

z =a’ . 2).
The general solution is
z="A*+ B¢,
where m(m+ 1) =n(n - 1).
Taking one term only, we get
. 22
z=n(n-1)At"?=n(n-1)A"2z" .. o (3),

so0 that the limited problem corresponds to powers of the distance as
the law of acceleration.

We then have in (2) a=mn(n- 1), and so, when the law of force
is given in terms of the distance, we can use (2) and (3) to g(,t an
expression for ¢.



Second Meeting, December 9th, 1892.

JouN ALisoN, Esq., M.A., F.R.S.E., President, in the Chair.

On certain results involving Areal and Trilinear
co-ordinates.

By Professor A. H. ANGLIN.

‘We propose to obtain certain results involving areal and trilinear
co-ordinates, by a uniform method of changing to Cartesian co-ordi-
nates with two sides of the triangle of reference as axes.

Taking ABC as the triangle of reference, change to Cartesian
co-ordinates with CA and CB as axes. Then, if &, 7 denote the
Cartesian, «, y, z the areal, and a, B, ¥ the trilinear co-ordinates of
any point, we have at once

and &=afsinC, §F=L/sinC.

1. To find the distance between two points.

If r be the distance between two points whose areal co-ordinates
are given, substituting in the usual expression in oblique Cartesians
for the square of the distance, we get

7 = b, — ;) + a*(y, — v5)* + 2ab (@, — 2,)(y; — ya)c0sC.
o = =@ = 5)(h — Ya) - 8N - o) (@ - B+ - )
= by — @)(1 — 2+ Y1 — Ya)-
Thus, by the invariable relation «+y +2=1 in areals, we have
=1t =aX(y, — ¥5) (7 — %) + (2 — 2) (@1 — %) + X~ @) (1 - 92)-o- (1)
The corresponding in trilinears may be obtained independently
in like manner, or deduced from the foregoing, the result being
~?={(B - B:)(y: - y5)sind + ...} /sindsinBsinC ... (1)

The distance between two points may also be expressed in other
interesting forms.
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Since (@ —2) + (1~ Y2) = — (21— ),
we have 2(m, — 223) (1 — Ya) = (21— 25)* — (2, — )" = (V1 — W)™
Substituting in

7= b2 - 25)" + 6%(y1 - 9a)" + (a7 + 8 - )2 - @) (11 - ),
we shall get
2% = (8% + ¢ — a®)(, — ,)* + two similar expressions,
or
7* =becosd(x, — 2,)* + cacos B(y, — y;)* + abeosC(2, - 2)* ... (2).
The corresponding in trilinears will be found to be

e sin24 (e, — a,)* +sin2B(B, — B,)* + sin2C(y, — y,) QY
2sindsin BsinC o ’

Further, since

%, — %y = (%yy — T3) — (2% — 2%) = Z - Y suppose,
with like equivalents for y, —y, and 2, - 2, substituting in (1) and
(2) we shall get the additional forms

P X - DX - Z)+ (Y- I\Y - X) + HZ-X\Z-Y) ... (3)
=be.cosA(Y — Z)* + cacos B(Z — X)* + abcosC(X - Y)?
=a?X? 4+ 022+ *Z* — 2bc Y ZcosA — 2caZXcosB - 2ab X YcosC,

which are sometimes useful.

2. To find the perpendicular distance of a point from a straight
line.
Let the equation to the line in areal co-ordinates be
I +my +nz=0,

and «, ¥, # the co-ordinates of the point. ‘
Reducing the problem to the oblique Cartesian system, we have
to find the perpendicular from the point (b', ay’) on the line

a(l - n)&+ b(m — n)j+ nab=0.

Now the perpendicular from (2, ¥') on the line dz+ By+C=0
in oblique Cartesians being

(4 + By’ + C)sinw/ /4% + B* — 24 Beosw,
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the required perpendicular |

absinC{(l - n)&’ + (m — n)y’ +n} :
J {a*(l —n)* + b*(m — n)? — 2ab(l — n)(m — n)cosC}

o= 2(la’ + my’ +n2')/d,
where
@ =a? + b*m® + *n® — 2bemncosd — ...
= (I - m)(l - n)a® + (m — n)(m — )b* + (n - [)(n — m)c.
[The corresponding expression in Trilinears may be deduced
from this, or obtained independently, as follows :—
If the point be (o', 8’y ¥). and the line la+mB +ny =0, chang-
ing to Cartesians, we seek the perpendicular from the point (a'cosecC,
B’cosecC) on the line

(cl - an)& + (cm - bn)j + 2nlcosecC =0,

which
(cl—an)a' + (cm bn)B +2nl
J {(cl — an)? + (cm — bn)* — 2(cl — an)(cm - lm)cosC}
= (lo’ + mB' +ny')/d,
where

d*= 0+ m® + n? - 2mncosd - 2nlcos B - 2hncosC.]

3. The perpendicular from a given point on the line joining two
other given points may be noticed.

The equation to the line joining the points (x,, Yy z,), (s Y» 2,)
being

2y — ) + (9% — 2y + (@9 — )2 =0
the perpendicular on it from the point (w;, y; 25) becomes

2A{(y,z2 Y2 )T+ ... }/d,
where

& =(X - Y)(X - Z)a*+ (Y - Z)(¥ - X)b* +(Z - X)(Z - Y)

Thus, by reference to the third expression for the distance be-
tween two points, we see that the perpendicular is

24(z1y225)/d,
where d is the distance between the points (x;, ¥, 2), (2 ¥s %)

h
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In Trilinears, the corresponding expression will be found to be
abe(a,B.y)/440%, |

These results also follow directly from the consideration that,
in Cartesians, the perpendicular is

l @ 1 sino |
2 Y 1 d ’
xz y 1

and on transformation to the other systems we readily obtain the
above expressions.

4. Tofind the area of a triangle in terms of the co-ordinates of its
angular points.

(1) Independently of the corresponding expression in Cartesians.

If A’ denote the area, since twice area =side x perpendicular,
we have by the foregoing

24" = 2A(,9/5%s5)- i‘j.
&= Ays)
involving the areal co-ordinates ; and

A" = abe(aB,75)/84°
involving the trilinear co-ordinates of the points.

(2) Directly from the expression in Cartesians.

‘We have
o 1 z y 1
oar=| % % 1| Gno—absing | @ % 1
By Py 1 x5 Ys 1
% % A
=20 |a y, %|,sincex+y+z=1
X3 Y3 % '

Thus A'=Azyszs)
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[The corresponding in Trilinears may be deduced from this, or
obtained independently thus :—

4 Bl sin C . N
=] q B, 1 e’ by direct substitution ;
as Ps

o 2A'InC-2A =| a,, By aoy+bB,+cy; | , since aa + 56 +cy=2A

ag By aay+bBs+cys

o Bon
a B 72
a3 :33 Vs

Thus A= abc(%ﬁz’)’s)/ 8a%]

ay, By ag+bB,+cy, '

=c

5. To find the condition that two lines may be at right angles.

In Trilinears, if the equations to the lines be of the form
la+mfB +ny=0, on changing to Cartesians they will be of the form
(cl — an)& + (cm - br)j + 2nlAcosecC =0,

Hence, the condition that two lines in oblique Cartesians may
be at right angles, becomes
(cl - an)(cl - an') + (cm — bn)(cm’ — bn')
= {(cl - an)(em’ = bn') + (cl' — an’)(cm — bn)}cosC =0.

Now the co-efficient of Il + mm’ + nn' is ¢ while that of mn' +m'n
is — (be — accosC), that is — c°cosd ; and those of nl' + n'l and Im/ + I'm
are — ¢*cos3 and — c’cosC respectively.

Hence the condition becomes

U +mm' +nn' — (mn' + m'n)cosd — (nl' +n'l)cosB
- (im’ + I'm)cosC = 0.

[The corresponding for areals may be obtained in like manner,
or deduced from the foregoing by writing la, mb, nc for {, m, n re-
spectively ; and is

a*ll' + ... = (mn' + m'n)becosd — ...=0.]

6. T find the condition that two lines may be parallel.
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The equation X+ my + nz=0 in areals becomes
a(l - n)& + b(m — n)j+nab=0
in Cartesians ; and the condition for parallelism of two lines is

therefore (- n)(m' - ') — (¥ = n')(m -n)=0,
that is, mn' - m'n4+nl =n'l+Im' -Im=0,
or Lmn

U!'m'n | =0;

111

the corresponding in trilinears being

L, mn
U m' o

=0
a b ¢ '

7. To find the angle between two lines.
If ¢ be the angle between two lines in oblique Cartesians whose
equations are of the form Az+ By+C =0,

AB - A'B)sine
tang = (
= AT+ BB - (4B + ZB)ooww

Expressing the trilinear equations in Cartesians and substitut-
ing, we get

- c{a(mn’ —m'n)+ ... }sinC
W= ST+ .. —(aw + mmoosd— ]

_ (mn' —m'n)sind + ...
W+ ... - (mn'+m'n)cosd - ...
In areals this becomes
nd= 2A(mn' —m'n+ ...)
a*ll' + ... — (mn' +m'n)bccosd — ...

[The expressions for sing may be worth noticing ; and may be
deduced from those for tang, or obtained independently, thus :—

In oblique Cartesians
(4B - A'B)sinw
4%+ B = 24 Beosw. ,JA™ + B* - 24'B'cosw

sing =
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which for areals becomes
2A(mn’ - m'n+ ...)
JO=m)l-n)a*+ .... JT-m )l —n')a’+ ...

and for trilinears

(mn' — m'n)sind + ... ]
JE+ . —2mncosd — ... JIP+ ... —2m'n'cosd — ...

8. We will now consider the general equation of the second degree,

and obtain certain results by the same method.

To find the conditions that the equation may represent a circle.

Let the equation in areals be

ux® + vy’ + w2 + 2u'yz + 202z + 2w'zy = 0.

Changing to Cartesians, and removing z by the relation
. x+y+2=1, this becomes

, & , 7 'y n EF
(20 —w—u)bTi-(?u —-v-w) ‘?+2(u + —w—w)a_-b

+ ... =0
Now the general equation

Ax*+2Bxy+Cy’+ ... =0

in oblique Cartesians will represent a circle if 4 =(C=Bsecw;
hence the required conditions are
2u' —v-w _ N -w-u_w+t+v-w-u
a’ - b ~ abcosC '’

each of which ratios

_ W -u-v 2w -u-vw
a®+b*— 2abcosC ct

[The corresponding for trilinears may be likewise obtained, or
at once deduced, when we get

26014' — ¢ — bPw = 2cav’ — a*w — Pu = 2abw’ - 5’14 -a%.]

9. To find the condition that the equation may represent an ellipse,
parabola, or hyperbola.

The above equation in Cartesians will iepresent these curves
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respectively according as B* - AC is negative, zero, or positive. If
we take the general equation in trilinears
ua® + v + wy? + 2u'By + 2v'ya + 2w'a = 0,
and change to Cartesians, removing y by the relation
aa+bB +cy =24, it becomes
(a*w + c*u — 2car’)a? + (v + b*w - 2bcu')y?
_ 4+ 2(abw +c*w’ - caw’ - bev')ey + ... =0.
Thus the required condition is that
— (abw + w’ — cau’ — bev') + (@®w + Pu - 2cav’)(c*v + b*w - 2beu’),
or, with a known notation,
U+ V0% + We* + 2Ubc + 2V ca+ 2 Wab
is positive, zero, or negative ; or that
’ u, w, v, a
w, v, o, b
v, W, w, ¢
a b ¢ O

is negative, zero, or positive.

The corresponding in areals may be obtained in a similar way,
or deduced from the preceding by putting a=b=c=1, when the
condition is that

QQu —v-w)(2v' —w-u)— (v +v' —w-w)}
or, U+ V+W+2U +2V +2W
is positive, zero, or negative ; or that
u, w, v, 1
w, v, w,1
v, v, w, 1

1, 1, 1, O

is negative, zero, or positive.

The condition that the equation in areals may represent a
parabola can also be expressed under another interesting form.,
Since
2w +v' - w—w)=(2u - v-w)+ (20 - w-u) - (2w - u-v),
the expression

4(u' +v' -w-w') - 42U - v-w)(2v' - w-u)
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is equal to the product of the four expressions

N —v—w x J20 —w—-u + 20 —u-v.

Hence the equation represents a parabola if any one of these
expressions is zero.

10. To find the condition that the equation may represent a rectan~
gular hyperbola.

The equation Axz?+2Bxy+Cy*+ ... =0 in oblique Cartesians
will represent a rectangular hyperbola if the lines Ada®+ 2Bzy
+ Cy*=0 are at right angles, the condition for which is that

A +C -2Bcosw=0.
Hence, for trilinears, the required condition is that
a*w + c*u — 2cav’ + c*v + b*w — 2bew’
- 2(abw + *w' - cau’ — bev')eosC =0,
A(u+v+w) - 2(b - acosC)w' — ... =0,
that is,
%+ v+ w— 2u'cosA - 2v'cosB — 2w'cosC =0,
[For areals, the condition is that
a*u + b* + *w — 2bccosA.u’ - ... =0,

or
Au+w -v -w)+ b (v+v - w —u)+H(w+w - —v)=0.]

11. To find expressions for the product, and sum of squares of the
semi-axes, when the equation represents a central conie.

If the general Cartesian equation a'a®+ 2hxy + b'y® + 292+ 2fy + ¢
=0 become A2*+ By®+ C'=0 when the conic is referred to its prin-
cipal axes, the product of the semi-axes is C/,/4B, and the sum of
their squares is - C(4 + B)/4B; and if the original axes be oblique
these are respectively equal to

Dsinw/(a'd’ - h’)% and - D(a’ + b’ - 2hcosw)/(a'd’ - h?)?,
a h g
AV f
9f ¢

where D = the discriminant

Transforming the general equation
wx? + vy + w2t + 2u'yz + 20’22 + 2w'ay =0
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in areals to the Cartesian system, it hecomes

(w+u—2v’)f—:+(v+w—2u’)f—“+2('w+w'-—u —v')i._-';
+2(v’—w)i:-+2(u'—w)-% +w=0;

whence, substituting, we shall get

u w v
D= |w v u| =H,
v ou w
u w v 1 I
@t -B)=-|Wv ¥ 1l -_§g
v uw w1
1110
and a®h¥(a’ + b’ — 2hcosw)

=(u+vw -v -w)at+(v+v -w - uw)b+ (w+w' -uw ~-V)P=1

Thus, the product of the semi-axes= 28H(~ K)%’
and the sum of their squares = - HI|K.

[Proceeding in like manner with the general equation
ua® + v + wy* + 2u'By + 2v'ya + 2w'ef =0
in trilinears, we shall get
D =a%’¢ H,

u, w, v, a
ab -M=-¢ | W, % % b | = _ 2K suppose,

v, W, w ¢

a b ¢ O

o' +b' - 2hcosw =c*(u + v+ w — 2u'cos 4 — 2v'cos B — 2w'cosC)
=c T suppose.

Thus, the product of the semi-axes= 2abcAH/( - K’)s:
and the sum of their squares = - a'b’’HI|K™]

12. Particular forms of the general equation.
The general equation in areals represents :—
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Two straight lines if H=0;
an ellipse, parabola, or hyperbola according as K< =>0;
a rectangular hyperbola if /=0 ;
while in trilinears the corresponding conditions are

H=0, K <= >0, I' =0 respectively.

We append the values of these functions for three particular
forms of the general equation.
(1) For the circumscribed conic in areals, lyz + mzx + axy =0

4H=lmn; 4K=0+m*+n* - 2mn - 2nl - 2m ;
2I=a*(l- m—-n)+b(m-n-10)+c(n-1-m),

or — I=1bccosA + meacos B + nabeosC ;
and the condition for a parabola is equivalent to
Jix Jmt Jn=0.

For the same conic in trilinears, {8y + mya +neB=0,

4H =Imn; 4K =al*+ b*m® + c*n® — 2bemn — 2canl — 2abim ;
—I' = lcos4 4 mcosB +ncosC ;

and condition for a parabola becomes
Jal+ Jbmx \Jon=0.
(2) For the inscribed conic, or conics touching sides of triangle
of reference in areals, ,/lz + Jmy+ Juz=0.
= —4Pm’n?; K= —4lmn(l+m+n);
I= (l+m+n)(a®+b*m+cn) - a’mn — b°nl - c*lm.
For the sa.m'e.conics in trilinears, /la' + ,/mfB + ,/ny=0
H= - 4Pm®’n?; K = — 4lmn(bel 4 cam + abn) ;
I= P+mP+n*+mn+nl+in
(3) For the conic with respect to which the triangle of reference
is self-conjugate, the equation to which in areals is lz* + my* + n2*=0,
H=Imn;—- K=mn+nl+im,
I=1a*+mb*+nc;
and for the same conic in trilinears la® +mﬁ’+@7’= 0

H=Imn; K'=mna®+ nlb®*+Imc*;
I'=l+m+n.
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History of the Nine.point Oircle.
By J. S. MAckAY.

The earliest author to whom the discovery of the nine-point
circle has been attributed is Euler, but no one has ever given a
reference to any passage in Euler’s writings where the characteristic
property of this circle is either stated or implied. The attribution
to Euler is simply a mistake, and the origin of the mistake may, I
think, be explained. It is worth while doing this, in order that
subsequent investigators may be spared the labour and chagrin of a
fruitless search through Euler’s numerous writings.

Catalan in his Théorémes et Problémes de Géométrie Elémentaire,
5th ed. p. 126 (1872), or 6th ed. p. 170 (1879), says that the learned
Terquem attributed the theorem of the nine-point circle to Euler,
and refers to the Nouvelles Annales de Mathématiques, 1. 196 (1842).
If the first volume of the Nouvelles Annales be consulted, it will be
found that Terquem has two articles on the rectilineal triangle.
The first (pp. 79-87) is entitled Considérations sur le triangle
rectiligne, d’aprés Euler ; the second (pp. 196-200) has the same
title, but d’aprés Euler is omitted. In the first article Terquem
mentions that Euler discovered certain properties * of the triangle,
and refers to the place where they are to be found (Novi Commen-
taric Academiae . . . Petropolitanae, xi. 114, 1765). He says he
thinks it useful to reproduce them with some developments, and
this is exactly what he does, for the first article is a synopsis of
Euler’s results, and the second article, which begins with the pro-
perty of the nine-point circle, contains the developments.

‘Who, then, is the discoverer of the nine-point circle ?

The fact is that there have been several independent discoverers
of it, English, French, German, Swiss. Their researches will be
treated of in the order of publication ; and it will conduce to brevity
of statement if the following notation be laid down :

ABC is the fundamental triangle
I I, I, I, are the incentre and the three excentres
O, M are the circumcentre and the nine-point centre
X, Y, Z are the feet of the perpendiculars from A, B, C on the
opposite sides.

* An abstract of Euler’s paper will be found in the Proceedings of the Edinburgh
AMathematical Society, IV, 51-55 (1886).
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In ILeybourn’s Mathematical Repository, new series, I. 18
(pagination of the Questions to be answered) Benjamin Bevan pro-
posed in 1804 the following :

« In a plane triangle let O, be the centre of a circle passing through
I, I, I, then will 00,=OI and be in the same right line, and

ooll =0l;=0,0;=2Fk
or the diameter of the circumseribing circle.”

When it is remembered that triangle I,LI; has I for orthocentre
and ABC for orthic triangle, and that the circumcircle of ABC is
the nine-point circle of I,LI; it will be seen that Bevan’s theorem
establishes the conclusions :

(1) That the mine-point centre bisects the distance between the
circumcentre and the orthocentre.

(2) That the radius of the ninepoint circle is half the radius of
the circumcircle. i

The proof of Bevan’s theorem given in the Mathematical Reposi-
tory, Vol. I, Part L, p. 143, is by John Butterworth of Haggate.

In the Gentleman’s Mathematical Companion for the year 1807
(which was published in 1806) John Butterworth proposes the
question :

When the base and vertical angle are given, what 8 the locus of .
the centre of the circle passing through the three centres of the circles
touching one side and the prolongation of the other two sides of a
plane triangle ?

- In the Mathematical Companion for 1808 (pp. 132-3) two solutions
of the question are given, the first by the proposer, and the second by
John Whitley. Whitley’s solution shows that the circumcircle of ABC
goes through seven points connected with the triangle I, LI, namely,
the feet of its perpendiculars, the mid points of two of its sides, and
the mid points of two of the segments intercepted between the
orthocentre and the vertices. It is evident from the tenour of his
proof that he must have been aware that the circumcircle of ABC
passed through the other two points which make up the well-known
nine, but for the purpose he had in hand he did not happen to
require them, and they are consequently not mentioned.

Butterworth’s solution of his own question shows that the cir-
cumcircle of ABC bisects the lines IT,, IT,, IT, and that the circum-
centre O bisects I0,.
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The next step in the history of the nine-point circle is the dis-
cussion not of the relations between the circumcircles of I,I,I, and
ABC, but of those between the circumcircles of ABC and XYZ.

The nine points are explicitly mentioned in Gergonne’s Annales
de Mathématiques in an article by Brianchon and Poncelet. The
article appeared on the 1st January 1821 in vol. xi., and the theorem
establishing the characteristic property of the circle in question
occurs at p. 215. As this article is reprinted by Poncelet in his
Applications &' Analyse et de Géométrie, 11. 504-516 (1864) I infer
that it owes its origin rather to Poncelet than to Brianchon.
Poncelet does not draw attention to the easy inference that the
radius of the nine-point circle is half the radius of the circumcircle,
nor to the position of the nine-point centre. This is natural enough,

for the title of his article is Recherches sur la détermination dune
hyperbole équilatére, au moyen de quatre conditions données, and the
existence of the nine-point circle is noticed incidentally. 1t may be
worth mentioning that in Poncelet’s demonstration there occurs the
theorem which Mr R. F. Davis discovered some years. ago and
applied to the triplicate-ratio and Taylor circles, namely :

If on each side of a triangle ABC a pair of poinis are taken so
that any two pairs are concyclic, then all the six points are concyclic.

Karl Wilhelm Feuerbach’s Eigenschaften einiger merkwiirdigen
Punkte des geradlinigen Dreiecks appeared at Niirnberg in 1822.
In § 56 of it occurs the theorem that “ the circle which goes through
the feet of the perpendiculars of a triangle meets the sides at their
mid points,” but nothing is said of the other three points. The
radius of the circle, $R, is mentioned, and the position of the centre
is given, midway between the orthocentre and the eircumcentre.
In § 57 Feuerbach proves that the circle which goes through the
feet of the perpendiculars of a triangle touches the incircle and the
excircles, and this is the first enunciation of that interesting pro-
perty of the nine-point circle. The proof consists in showing that
the distance between the nme-pomt centre and the incentre is equal

to iR -

In the Philosophical Magazine, II. 29-31 (1827) T. S. Davies
proves the characteristic property of the nine-point circle. At the
outset of his article, which is entitled Symmetrical Properties of
Plane Triangles, and dated Janr. 15*, 1827, he says: “The follow-
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ing properties . . . do not appear to have been noticed by mathe-
maticians.” Davies was very scrupulous in giving to his predecessors
the credit of their discoveries ; hence he is another discoverer of the
nine-point circle. In the fourth of his propositions and in the
corollaries thereto, Davies, besides mentioning the length of the
nine-point radius and the position of the nine-point centre, remarks
that the centroid is also situated on the line which contains the
orthocentre, the nine-point centre, and the circumcentre.

In Gergonne’s Annales de Mathématiques, xix. 83764 there is
an article* by Steiner entitled Développement d'une série de théorémes
relatifs aux sections coniques. The article appeared in 1828, and in
the course of it Steiner shows, among other things, that the nine-
point circle property is only a particular case of a more general
theorem. He remarks also that the centroid is on the line joining
the orthocentre and the circumcentre (attributing this property to
Carnot ; it was discovered by Euler) ; he states that the four points,
the circumcentre, the centroid, the nine-point centre, and the ortho-
centre, form a harmonic range, and that the orthocentre and the
centroid are the centres of similitude of the nine-point circle and
the circumcircle ; and lastly he adds, without proof, the statement
that the nine-point circle touches the incircle and the excircles.

In a long note to § 12 of his tractatet Die geometrischen Con-
structionen, ausgefihrt mittelst der geraden Linie und eines festen
Kreises, which appeared in 1833, Steiner discusses the nine-point
circle and the circumcircle in connection with their centres of simili-
tude, and he enunciates the theorem that twelve points associated
with the triangle lie on one and the same circle. At the end of the
note Steiner states that when he announced the theorem that the
nine-point circle touched the incircle and the exciroles he was not
aware that it had been previously made known by Feuerbach.

Hitherto the circle had received no special name. The designa-
tion * nine-point circle” (le cercle des neuf points) was bestowed on
it in 1842 by Terquem, one of the editors of the Nouvelles Annales ;
see that journal, Vol. I., p. 198. It has also been called the six-
points circle, the twelve-points circle, the » — point circle, Feuer-

* Republished in Steiner’s Gesammelte Werke, I. 191-210 (1881).
+ Republished in Steiner’s Gesammelte Werke I. 489-492.
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bach’s circle, Euler’s circle, Terquem’s circle, i/ circolo medioscritto,
the medioscribed circle, the mid circle, the circum-midcircle.

There are other demonstrations of the characteristic property of
the nine-point circle quite distinct from those given in the articles
already spoken of. One by Terquem will be found in Nouvelles
Annales, I. 196 (1842); a second by C. Adams in Die Lehre von
den Transversalen, p. 37 (1843), and a third, also by Adams, in
Die merkwiirdigsten FEigenschaften des geradlinigen Dreiecks,
pp. 14-16 (1846); a fourth by T. T. Wilkinson in the Lady’s and
Gentleman’s Diary for 1855, p. 67 ; a fifth by William Godward in
Mathematical Questions from the Educational Times, VIL. 86-7
(1867). Besides these there are several other proofs not essentially
different. Those who are curious in such matters may refer to
proofs by Rev. Joseph Wolstenholme in the Quarterly Journal of
Mathematics, II. 138-9 (1858); by W. H. B[esant] in the Oxford,
Cambridge and Dublin Messenger of Mathematics, IT1. 222-3 (1866) ;
by Desboves in Questions de Géométrie Elémentaire, 2" ed., pp.
146-7 (1875); by Captain Mennesson in Nouvelle Correspondance
Mathématique, IV. 241-2 (1878); by Rev. John Wilson in Proceed-
ings of the Edinburgh Mathematical Society, VI. 38-40 (1888).

Of the theorem that the nine-point circle touches the incircle and
the excircles the first two published proofs, namely, Feuerbach’s in
1822 and Terquem’s in 1842, were analytical. Steiner merely
enunciated the theorem. The first geometrical proof appeared in
the Nouvelles Annales, IX. 401-3 (1850) in an article entitled Note
sur le triangle rectiligne by J. Mention. The next appeared in the
Lady’s and Gentleman’s Diary. In the Diary for 1853, p. 77,
'W. H. Levy proposes the question :

In any plane triangle the sum of the four distances from the point
of bisection of the line joining the centre of the circumscribing circle
and the point of intersection of the perpendiculars from the opposite
angles upon the sides, to the centres of the inscribed and escribed circles
i equal to three times the diameter of the circumscribing circle.

A geometrical solution is given in the Diary for 1854, p. 56,
where the following results are established :

MI =iR-»
MIL=3R+7, MI, =4R+7r, ML=}R+n;;
and hence Z(MI) =2R +(r,+ 73+ 13—7)=3D.
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Notwithstanding Davies’s article in the Philosophical Magazine
in 1827, the nine-point circle seems to have been almost unknown
in the United Kingddm ; and hence it is not so curious as it might
appear at first sight that among the 23 mathematicians who
answered Mr Levy’s question only one should have drawn any
further inference from it.

_ In the same number of the Diary on p. 72, T. T. Wilkinson of
Burnley, who was a friend of Davies, and was acquainted* with his
paper in the Philosophical Magazine, proposes the question :

Let ABC be any triangle; AD, BE, CF the perpendiculars drawn
Jrom A, B, C to the opposite sides, mutually intersecting at P: then
the circle described through D, E, F, the feet of the perpendiculars
will be tangential to the sixteen inscribed and escribed circles of the
triangles ABC, APB, BPC, and CPA.

The solutions of Wilkinson’s question given in the Diary for
1855, pp. 67-9, all depend on the four results established in the
Diary for 1854,

In the Diary for 1857, pp. 86-9, John Joshua Robinson
enunciates and proves the theorem :

The circle described through the middle points of the sides of any
triangle i3 tangential to several infinite systems of circles tnscribed
and escribed to triangles drawn according to a given law.

Or the theorem may be expressed more fully :

If the radical centres of the inscribed and escribed circles of any
triangle be taken, and circles be inscribed and escribed to the triangles
Jormed by joining these radical centres, and the radical centres of the
latter system of circles be again taken and circles inscribed and
escribed to the triangles thus formed, and so on ad infinitum, the
infinite number of circles thus formed, as well as the original system
of inscribed and escribed circles, always touch the circle drawn through
the middle points of the first triangle.

The editor of the Diary in a note to Robinson’s theorem men-
tions that Wilkinson first announced his beautiful theorem under
this general form of enunciation.

In the Diary for 1858, pp. 86-7, Wilkinson has a short article

*1 am in possession of a collection of printed mathematical papers which
belonged to Wilkinson. The paper of Davies’s referred to is imperfect, but is
completed in Wilkinson’s handwriting. S
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entitled Notae Geometricae, from which the following extracts are
taken.

“In the extended solution to which allusion is made [Robinson’s
solution] I noticed that the property became porismatic when any
three points are taken for the feet of the perpendiculars, and the
triangles thence resulting are constructed according to an almost
obvious law. All the triangles thus formed are evidently those of
least perimeter to the primitives obtained by bisecting the angles
formed by joining the feet of the perpendiculars in each instance,
and hence connect themselves immediately with the many beautiful
and curious properties known to result from this view of the
subject. . . .

¢ But the property admits of a more general enunciation . . .
by projecting the system upon a plane . . .; for the perpendiculars
then become lines drawn conjugate to the opposite sides, the con-
tacts are preserved, and the circles become conics similar and
similarly placed. Hence if ABC be a triangle inscribed in a conic,
and if through each vertex there be drawn a transversal respectively
conjugate to the opposite side, then

(1) These three transversals will intersect in the same point O.

(2) The middle points of the lines OA, OB, OC, the middle
points of the sides AB, B0, CA, and the points a, b, ¢, where the
transversals meet the sides, are nine points situated in a second
conic, similar and similarly placed with respect to the first.

(3) This second conic is also tangential to the sixteen conics
inscribed and escribed to the triangles AOB, BOC, COA, and
similar and similarly placed with respect to the two first conics.

In this connection, reference may be made to a paper of Pro-
fessor Eugenio Beltrami (read 12th March 1863), Intorno alls
coniche di nove Punti ¢ ad alcune quistioni che ne dipendono, printed
in the Memorie della Accademia delle Scienze dell’ Istituto di Bologna,
27 geries, Vol. II., pp. 361-395 (1862); and also to a paper by
Schriter (dated October 1867), Erweiterung einiger bekamnten
Eigenschaften des ebemen Dreiecks, in Crelle’s Journal LXVIII.
203-234 (1868).

In an article,* dated July 17, 1860, the Rev. George Salmon
called attention to Feuerbach’s theorem. He says:

* Quarterly Journal of Mathematics, IV, 152-4 (1861).
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“The following elementary theorems may interest some of the
readers of the Quarterly Journal.

(1) The distance between the point of intersection of the per-
pendiculars of a triangle and the centre of the circumscribing circle
is given by the equation

D?= R? - 8R%o0sAcosBcosC.

(2) The distance between the point of intersection of perpen-
diculars and the centre of the inscribed circle is given by the
equation

d?=2r* — 4R%osAcosBcosC.
Hence D*-248=R?- 42

(3) It follows that if the two circles be fixed, the locus of the
intersection of perpendiculars is a circle whose radius is R - 2r, and
whose centre is found by producing the line joining the centres to a
distance equal to itself, and so that the centre of the inscribed circle
may lie in the middle.

From the preceding theorems Dr Hart, to whom I had happened
to mention them, drew the following inferences :

Consider the circle passing through the middle points of the
sides of the triangle; its radius=4R, and its centre is the middle
point of the line joining the centre of the circumscribing circle to
the intersection of perpendiculars. The line then joining this middle
point to the centre of the inscribed circle is the line joining the
middle points of the sides of a triangle whose base has been proved
to be R —2r. Its length is therefore 1R — .

(4) Hence, when the inscribed and circumscribing circles are
given, the locus of the centre of the circle passing through the
middle points of sides is a circle having for its centre the centre of
the inscribed circle.

Further: the distance between the centres of the inscribed
circle and of the circle through the middle points of sides has been
proved to be exactly the difference between their radii; and the
same argument applies to any of the four circles which touch the
three sides of the given triangle ; hence

(5) The circle which passes through the middle points of the .
sides of a triangle touches the four circles which touch the three
sides.
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This theorem was new both to Dr Hart and myself,* but I have
Iately learned from a friend that it belongs to M. Terquem, who has
given it in his Annales, T. I.,p. 196. Dr Hart hassince made other
more direct demonstrations of it, and Sir William R. Hamilton, to
whom he mentioned the theorem, was sufficiently interested by it
to take the trouble of investigating it algebraically, when he
obtained very simple constructions for the common point and
common tangent of the two circles.”

Dr Salmon then sums up Sir William Hamilton's results in three
theorems, which he states and proves.

In the same volume of the Quarterly Journal (pp. 245-252), Mr
John Casey has an article, dated Nov. 27, 1860, in which he proves
not only Feuerbach’s theorem, but also, without knowing the results
that had been previously published in the Diary, extends the con-
tact to an indefinite number of circles. See Casey’s Sequel to Euclid,
6% ed., pp. 105-6 (1892), where a proof is also given of the following
extension (due to Dr Hart) of Feuerbach’s theorem :

If the three sides of a plane triangle be replaced by three circles,
then the circles touching these, which correspond to the inscribed and
escribed circles of a plane triangle, are all touched by another circle.

See also Lachlan’s Elementary Treatise on Modern Pure Geo-
metry, pp. 251-7 (1893).

There are other demonstrations of Feuerbach’s theorem besides
those already spoken of. The following references may be given.

Mr J. M‘Dowell in the Quarterly Journal of Pure and Applied
Mathematics, V. 269-271 (1862).

Mr W. F. Walker in the same periodical, VIII. 47-50 (1867).

Herr J. Lappe in Crelle’s Journal, LXXI. 387-392 (1870).

Herr Binder in 1872 communicated to Dr Richard Baltzer a
proof which will be found in the latter’s Elemente der Mathematik,
II. 92-3 (1883).

Mr J, P. Taylor in the Quarterly Journal, XIII. 197 (1875).

Mr E. M. Langley in 1876 discovered the proof given in the
Harpur Euclid, p. 489 (1890).

* Might it not be that Dr Salmon had forgotten it and rediscovered it? This
conjecture is made because Mr J. J. Robinson begins an article in the Diary for
1858, p. 88, by saying : ‘“ My best thanks are due to the Rev. George Salmon of
Trinity College, Dublin, for having called my attention to two errors which some-
how have crept into my former paper,” that is, the paper in which Feuerbach’s
theorem was extended,



28

M. Chadu of Bordeaux in Nouvelle Correspondance Mathé-
matique, V. 230-2 (1879).

Mr W. F. M‘Michael in the Messenger of Matlwmatwc, XL
77-8 (1882).

Mr Morga Focn tho Wedaran.
tional Times,
in the same v

Mr Willi
communicate 1 the Proceedings

of the Edinburgh Mathematical Society, V. 102-3 (1887). In a
letter, dated May 6, 1888, the Rev. G. Richardson somewhat
abbreviates Mr Harvey’s proof.

In the Messenger of Mathematics, XIII. 116-120 (1884), Mr C.
Leudesdorf has an article, dated Nov. 7, 1883, and entitled * Proofs
of Feuerbach’s Theorem.” He there discusses several of the pub-
lished proofs, and shows how some of them may be simplified.

Mr Samuel Roberts in the Messenger, XVIL. 57-60 (1887).

- In Milne’s Companion to the Weekly Problem Papers, pp. 187-8
(1888), will be found a proof by Mr R. F. Davis; another, by Mr
‘W. 8. M‘Cay, occurs in M‘Lelland’s ZT'reatise on the Geometry of the
Circle, p. 183 (1891); and still another, due to Professor Purser, in
Nixon’s Euclid Revised, pp. 350-1, or in Lachlan’s Elementary
Treatise on Modern Pure Geometry, pp. 206-7 (1898).

: FIRST DEMONSTRATION (Whitley, 1807).

When the base and vertical angle are given, what is the locus of
the centre of the circle passing through the three centres of the circles
touching one side and the prolongation of the other two sides o a
plane triangle ?

F1GURE 1.

Let ABC be a plane triangle, AVCW'UBU’ the circumscribing
circle, and I,, I,, I, the centres of the circles specified in the question.

Then by known properties the lines joining the angles A, B, C
of the triangle and the centres I,, I, T; respectively will bisect those
angles, and meet in I the centre of the inscribed circle. Also the
lines joining I,, I, I, will pass through the angular points A, B, O
of the triangle, and be perpendicular to AI,, BI, CI,; and if
AT, BL, meet the circumscribing circle BU'CU again' in U and V,
and LI, I,I; meet it also in U’, W' respectively, then will

) IU=1LU, IV=LV, LU =LU, LW =L,W.
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Draw U’'O, W'O, perpendicular to LI, LI, and their intersee-
tion O, will evidently be the centre of the circle passing through
I,I, I, The rest being drawn as per figure, it is obvious that
W'VU’O, is a parallelogram, and also that UU’ is perpendicular to
BC and a diameter of the ocircle BU'CU.

Now the base BC and vertical angle BAC being given, EF will
. e given, as will also

UC=UI=WV=0,U';

therefore O,U" is given, and the point U’ being given, the locus of
0, is consequently a given circle of which U’ is the centre and radius
0,U’ equal to UC.

SECOND DEMONSTRATION (Ponoelet, 1821).

The circle which passes through the feet of the perpendiculars let
Jall from the vertices of amy triangle on the opposite sides passes also
through the mid points of these three sides as well as through the mid
points of the distances which separate the vertices from the point of
concourse of the perpendiculars.

Fiaure 2.

Let X, Y, Z be the feet of the perpendiculars let fall from the
vertices of the triangle ABC on the opposite sides, and let A’, B, C'
be the mid points of these sides.

The right-angled triangles CBZ and ABX being similar, we have

- BO:BZ=AB:BX;
whence, since A’ and C’ are the mid points of BC and AB,
BA'"BX =B(C"BZ;

that is to say, the four points A’, X, C, Z belong to one and the
same circumference.

It could be proved in a similar way that the four points
A', X, B', Y are on one circle, as well as the four points B', Y, ¢, Z,

Now, if it were possible that the three circles in question were
not one and the same circle, it would be necessary that the direc-
tions of the chords which are common to them two and two should
meet in a single point; but these chords are precisely the sides of
the triangle ABO, which cannot meet in the same point ; therefore
it is equally impossible to suppose that the three circles are dif-
ferent ; therefore they are one and the same circle,
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Let now U, V, W be the mid points of the distances HA, HB,
HC which separate H, the point of concourse of the perpendiculars
of the triangle ABO, from the respective vertices.

The right-angled triangles CHX, CBZ being similar, we have

CH:CX=CB:CZ;

whence, since the points W and A’ are the mid points of the dis-
tances CH and CB
CW-CZ=CX-0A’;

that is to say, the circle which passes through A’, X, Z passes also
through W.

It could be proved in the same way that this circle passes through
the two other points, U, V ; therefore it passes at the same time
through the nine points X, Y, Z, A', B, C, U, V, W,

Poncelet’s proof may be somewhat simplified in the following

menner,* .
Fiqure .2
Because B, Z, Y, O are concyelic ;
therefore AB'AZ=AQ AY;
therefore AC"AZ=AB"AY;

therefore B, C, Y, Z are concyclic.

Because A, Z, H,Y are concyclic;
therefore BA ‘BZ=BH'BY;
therefore BC'‘BZ=BV‘BY;
therefore C, Y, Z, V  are concyclic,

that is, V is on the circle through B', C), Y, Z,

Similarly W is on the circle through B', C', Y, Z.
that is B,C,Y,Z V, W are concyclic.

Hence C' A, Z, X, W, U are concyclic.

Now there are three points C’, Z, W common to these two sets
of six points; d
therefore the two sets of six points lie all on one circle ; and the
nine points A', B, C', X, Y, Z, U, V, W are concyclic.

* One of the principal features of this simplification has been given by Mr
R. D. Bohannan in the Annals of Mathematics, 1. 112 (1884),
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Note.—When the diagram of a triangle and its nine-point circle
has to be constructed, it will be found convenient to begin by de-
scribing the nine-point circle ; then to choose three points on its
circumference for the vertices of the median triangle A'B'C’; then
through A’, B, C' to draw parallels to B'C’, C'A’, A’'B". These
parallels will intersect the circle again at the feet of the perpen-
diculars X, Y, Z, and will intersect each other at the vertices of the
fundamental triangle ABC.

THIRD DEMONSTRATION (Peuerbach, 1822).

The radius of the circle circumscribed about the triangle X YZ,
which is made by the feet of the perpendiculars in the triangle ABC,
18 half as large as the radius of the circle circumscribed about the
triangle ABC, and its centre M bisects the distance between O, the
centre of the circle ABC, and H the point of intersection of the per-
pendiculars.

Fi1Gure 3.

Join OA, OH, and draw OA’' perpendicular to BC. Through
A’ and M the mid point of OH draw A'M and produce it to meet
the perpendicular AX in U.
Because MH= MO
HMU= . OMA’
LMHU = . MOA’
therefore HU = OA’ and UM =A'M.
But because OA’=half AH
therefore HU =half AH, and AU=O0A’

Again, because AU is parallel to OA',
therefore UA'= AO and A'M =half AO.

From M draw MD perpendicular to BC, and join MX.,
Then because the straight lines HX, MD, OA’ are all parallel
to each other HM:OM=XD:A'D;

and since HM =OM, therefore XD =A'D,

and consequently MA'=MX.,
And since MA'=half AO, therefore MX =half AO.
Similarly MY =half BO, MZ = half CO.
Now since AO=BO =CO

therefore MX=MY=MZ
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and M, the mid point of OH, is the centre of the circle circumscribed
about the triangle XYZ,

Feuerbach’s proof may be simplified as follows.*

Ficure 3.
Let ABC be a triangle, H its orthocentre, O its circumcentre.

Draw OA’ perpendicular to BC and therefore bisecting BC.
Bisect AH at U ; join OA, OH, A'U.

Because AH is twice OA’, therefore AU =0A’;
therefore AOA'U is a parallelogram, and A'U=0A=R.

Because UH is equal and parallel to OA’,
therefore A’U and OH bisect each other at M.

Now since M is the mid point of the hypotenuse of the right-
angled triangle A'XU, the circle described with M (the mid point
of OH) as centre and radius equal to half A'U, that is, equal to R,
will pass through the three points A’, X, U.

Hence also the same circle will pass through B, Y, V, and
C,Z,W.

FOURTH DEMONSTRATION (Davies, 1627).
ProposiTION T.

Let ABC be any plane triangle, and let perpendiculars AX, BY,
CZ be demitted from each angle upon its opposite side, and prolonged
to meet the circumscribing circle in R, S, T'; then if the triangle RST
be formed, its angles will be bisected by the said perpendiculars.

FIGURE 4.

For, since the lines CZ, BY are perpendicular to the lines AB,
AC, and the angle BAC common to the two triangles BYA, CZA,
the angle ABY is equal to the angle ACZ. Hence they stand on
equal arcs AS, AT. But the angles ARS, ART stand on the same
two arcs, and therefore they are equal ; or the angle SRT is bisected
by AR.

In the same manner the angles RST, STR are proved to be
bisected by BS, CT respectively.

* This simplification is given in Dr Th. Spicker's Lehrbuch der ebenen Geo-
metrie, 15th ed., p. 216, or § 220 (1881).
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Cor. 1. The angles of the triangle XYZ are also bisected by the
same perpendiculars.

For each side of this triangle is manifestly parallel to a corre-
sponding side of RST.

Cor. 2. Each of the triangles AZY, BXZ, CYX is similar to the
original triangle.

For the angles AXZ, ACZ being equal, their complements BXZ,
BAC are equal. In like manner it may be shown that BZX is equal
to ACB ; and therefore the triangle BXZ is similar to ABC. And
so0 of the others.

Or this corollary may be thus deduced :

Because BZC, BYC are right angles, a circle will pass through
B,Z, Y, C; and therefore the angles AZY, AYZ are equal respec-
tively to ACB, ABC. And so of the others.

PropositioN II.

4 curcle described through the feet of the pefpendiculars, X, Y, Z
will also bisect the sides of the triangle.

FIGURE 5.

For, let the circle cut HA in U, HBin V, HCin W ;
BCin A’, CA in B, and ABin C'.

Also, join UA’, VB', and WC'.

Then, since A’XU, B'YV, CZW are right angles, the lines A'U,
BV, C'W are diameters of the circle XYZ. They also pass through
the middles of the arcs YZ, ZX, XY ; and are, consequently, per-
pendicular to the middles of the chords YZ, ZX, XY which respec-
tively subtend those arcs. But YZ is also a chord of the semicircle
BZYC ; and as UA' is a chord perpendicular to the middle of it, it
passes through the centre of the semicircle, and therefore bisects the
diameter BC. Hence A’ is the middle of BC.

In the same manner it may be proved that CA, AB are bisected
in B’ and C'.

ProrposiTion IIL

Let H be the point of intersection of the perpendiculars AX, LY,
CZ; then the distance of H from each of the angles A, B, C is
bisected by the circle XYZ.

FiGUre 5.
For join C'V.
Then VC'ZY is a quadrilateral in a circle, and the angle BC'V
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is equa to the opposite angle ZYV. But ZAYH is also a quad-
rilateral in a circle, and therefore the angle ZYH is equal to ZAH.
Hence the angle BC'V is equal to ZAH, or C'V is parallel to AH.
Consequently we have

BV:BH=BC :BA=1:2;
or BH is bisected in the point V.

In like manner it appears that U and W are the middles of AH
and CH.

Cor. Let O be the centre of the circumseribing circle, and the
perpendiculars OA’, OB, OC' drawn; we shall have AH equal to
twice the perpendiculars OA’, BH to twice OB’, and CH to twice
ocC.

For by the above demonstration A'V, C'V are parallel to CH
and AH respectively, and consequently to C'O and A’O respectively ;
whence C'V is equal to OA’. But C'V is half AH, or AH is equal
to twice C'V, or to twice OA'.

The same reasoning applies to the other stated equalities.

ProrosiTioN 1V,

Let M be the centre of the circle XYZ, O that of the circle ABC,
and H the intersection of the perpendiculars ; these three points
M, O, H are in one straight line.

FiGurE 5.

For, since OA’ is parallel and equal to HU, the lines A'U, OH
bisect each other in their point of intersection, or OH passes through
the middle of UA’, the diameter of the circle XYZ, and therefore
through its centre M.

Cor. 1. The centre M of the circle XYZ is midway between H
and O.

Cor. 2. It is known that the centre of gravity of the triangle is
alsoin HO. Whence four important points belonging to the triangle
are in one line.

Cor. 3. The diameter of the circle XYZ is half the diameter of
the circle circumscribing the triangle ABC.

For, join A'B, B'C', C'A".

Then this triangle is similar to the triangle ABC, and has half
its linear dimensions. Hence the diameter of a circle about A'B'C’
(viz., the circle XYZ by Proposition III.)is half the diameter of
that about ABC.



35

Davies’s proof may be somewhat simplified in the following
manner.
Ficure 5.

Let AX, BY,.CZ be the perpendiculars of the triangle ABC
intersecting in H. Join YZ, ZX, XY ; and let the circle circum-
scribed about XYZ cut BC at A’ and AX at U.

Then A'U is a diameter of the circle XYZ.

But since AX bisects the angle YXZ,
therefore U is the mid point of the arc YZ ;
therefore A'U bisects perpendicularly the chord YZ.

Now the circle BZYC, whose diameter is BC, has also YZ for a
chord ;
therefore A'U passes through the centre of the circle BZYC,
that is, A’ is the mid point of BC. '

Hence also the circle XYZ passes through the mid points of CA
and AB; that is, the circle through the feet of the perpendiculars
of a triangle bisects the sides of the triangle.

Now X, Y, Z are also the feet of the perpendiculars of the
triangles HCB, CHA, BAH ;
therefore the circle X'YZ bisects the sides HA, HB, HC.

FIPTH DEMONSTRATION (Steiner, 1828).

If from any point O in the plane of the triangle ABC there be
drawn 04’y OB', OC' respectively perpendicular to BC, CA, AB, then

AB?+ BC?+ CA®=BA"+ CB*+ AC"?;

and this i8 the necessary and sufficient condition that the perpendicu-
lars to BC, CA, AB at the points A', B', C' should be concurrent.

F1GURE 6.

Through A’, B, C' the feet of the three perpendiculars let there
be described a circle whose centre is M and which cuts the sides of
the triangle again at X, Y, Z.

Join OM, and produce it to H so that MH is equal to MO.

Because the perpendiculars from M on the three sides of the
triangle would pass through the mid points of the intercepted chords
A'X, BY, C'Z, it follows that the perpendiculars to the three sides
at the points X, Y, Z are concurrent at the point H. Hence the
theorem :
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If from any point O in the plane of a triangle ABC there be drawn
04', OB, OC' respectively perpendicular to BC, CA, AB, and if
through A’y B', C' the feet of these perpendiculars there be described a
circle whose centre i3 M and which cuts the sides again at X, Y, Z,
the perpendiculars to the sides at the last three points will be concur-
rent at a point H such that M is the mid point of OH.

Join B'C; YZ, OA, HA.
Then L ABC' =L AZY,

because they stand on the same arc YC'.
But on account of the cyclic quadrilaterals BOC'A, ZHY A

LABC =L AOC and  AZY=AHY;

therefore £ AOC' =L AHY.
But LBOC' = LYHZ,

because each is supplementary to ~ A ;

therefore L AOB'= . AHZ, by subtraction ;

therefore £ 0AB' = - HAZ,

because these angles are complementary to the former two.
But LOAB'= L OCB),

on account of the cyclic quadrilateral B'OC'A ;

therefore LOCB = L HAZ.

Now since C'O is perpendicular to AZ,
therefore C'B' is perpendicular to AH ;

and the same is the case with C’'A’ and BH, with A’'B’ and CH.

Let a be the mid point of the chord B'C’;
then the straight line Ma will be perpendicular to B'C’, and con-
sequently parallel to HA.

For the same reasons if b and ¢ be the mid points of C’A’ and
A’'B’ respectively, the straight lines Mb and Me will be respectively
perpendicular to C'A’ and A'B'.

Hence the theorem :

If from any point O in the plane of a triangle ABC there be drawn
04', OB, OC' respectively perpendicular to BC,CA, AB, and if from
the vertices of the triangle other perpendiculars be drawn to B'C", C'4’,
A'B’ the sides of the triangle A'B'C', these last three perpendiculars
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will be concurrent at one point H. And further, if from this last
point there be drawn to the sides of the triangle ABC the perpendicu-
lars HX, HY, HZ, the six points A', B, C', X, ¥, Z will belong to
one circle having its centre M at the mid point of OI.

From the preceding there is easily deduced the solution of the
problem :

Straight lines 04, OB, OC being drawn from any point O in the
plane of a triangle ABC to its three vertices, to inscribe in this triangle
another triangle XYZ whose three sides YZ, ZX, XY may be respec-
tively perpendicular to these straight lines.

It has been proved that . OAC= » HAB,

and since the same relation should hold good for the three vertices
of the triangle ABC, therefore

LOAC= LHAB, .OBA= . HBC, .OCB= L HCA.
Hence the theorem :

Through any point O in the plane of a triangle ABC let there be
drawn to i3 vertices the straight lines 04, 0B, OC ; if through the
same vertices there be drawn three new stratght lines making with the
sides AB, BC, CA angles respectively equal to the angles O0AC, OBA,
OCB these last three straight lines will be concurrent at a point H ;
and of from the points O, H perpendiculars OA', OB, OC', I/ X, I['Y,
HZ be drawn to BC, CA, AB, their feet A', B, C', X, Y, Z will
belong all six to one circle whose centre M is the mid point of OIL.

Among various particular cases we shall call attention only to
the following :

Suppose the point O to be the centre of the circle circumscribed
about the triangle ABC, the feet A’, B, C' of the perpendiculars
0A’, OB, OC’ will be the mid points of BC, CA, AB, and con-
sequently the straight lines B'C’, C'A’, A’B’ will be respectively
parallel to the sides BC, CA, AB. Now since AH is perpendicular
to B'C', it will be perpendicular also to BC, and consequently the
point H will be the point of concourse of the perpendiculars drawn
from the vertices of the triangle ABC to the opposite sides. Hence
the theorem :

The mid points A, B', C' of the sides of a triangle ABC and X,
Y, Z the fect of the perpendiculars drawn from the vertices to the
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opposite sides are six points situated on the circumference of a circle
whose centre M 18 the mid point of the straight line which joins O the
circumscribed centre to H the point of concourse of the perpendiculars
of the triangle ABC. Further, the three radii OA, OB, OC are re.
spectively perpendicular to the sides YZ, ZX, XY of the triangle
XYZ ; and finally these radii are so situated that the angles OAB,
O0BC, OCA are respectively equal to the angles HAC, HBA, HCB, or
XAC, YBA, ZCB.

On the straight line OH there exists a fourth point G (Carnot),
the intersection of the straight lines AA’, BB, CC’ which join the
vertices of the triangle ABC to the mid points of its opposite sides,
and these four points O, G, M, H are situated harmonically, that is
to say, so that

GM:GO=HM:HO
which is the same as
1:2=3:6.

Besides, the points H, G are the centres of similitude of the two
circles which have their centres at M and O ; therefore the circle
which has its centre at M passes through the middle of the straight
lines HA, HB, HC; and the points X, Y, Z are respectively the
mid points of the straight lines HR, HS, HT, the prolongations of
HX, HY, HZ to the circumference of the circle whose centre is O.*

The circle whose centre is M possesses, in particular, this pro-
perty well worthy of remark : it touches each of the four circles
inscribed and escribed to the triangle ABC.

This demonstration of Steiner’s contains some of the fundamen-
tal propositions relating to the subject of Isogonals.

* Hence this theorem is easily inferred :

If on the circumference of the circle whose centre is O, four points A, B, C, D be
taken arbitrarily, thesc four points will be, thrce and three, the vertices of four in-
scribed triangles to which will correspond four H points, four M points, and four G
points. Now, these four points of each kind will belong to one circle whose radius will
be equal to that of the given circle for the four H points, half of this radius for the four
M points, and one third of it for the four Q points. Besides, the centres of these three
new circles will be with the point O harmonically situated on one straight line, as are
the four points H, M, @, O ; in such a way that the cenire O will be the common centre
of similitude of these three new circles.
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For example :

(1) OA, HA LA
OB, HB } are isogonals with respect to { . B
0C, HC .C

(2) O, H are isogonals with respect to ABC.

(8) If O, H be isogonals with respect to ABC, the mid point of
OH is equidistant from the feet of the perpendiculars drawn from
O, H to the sides of ABC. Or, in other words,

The projections on the sides of a triangle of two isogonal points
furnish six concyclic points.

(4) If O, H be isogonals with respect to ABC, the sides of the
pedal triangle corresponding to O are perpendicular to HA, HB, HC ;
and the sides of the pedal triangle corresponding to H are perpen-
dicular to OA, OB, OC.

(5) If three lines drawn from the vertices of a triangle be con-
current, their isogonals with respect to the angles of the triangle are
also concurrent.

(6) Since the radius of the circumcircle drawn to any vertex is
isogonal to the perpendicular from that vertex to the opposite side,
therefore the three perpendiculars of a triangle are concurrent.

SIXTH DEMONSTRATION (Terquem, 1842).
Ficure 7.

Let ABC be a triangle, A’, B, C’ the mid points of the sides,
X, Y, Z the feet of the perpendiculars which intersect at H, and
U, V, W the mid points of AH, BH, CH.

Join B'C, C'A’, A'B), C'X.

Then CX=1JAB=A'B;

therefore B, C', A’, X are the four vertices of a trapezium having
equal diagonals.

This trapezium is therefore inscriptible in a circle ; and therefore
the three feet of the perpendiculars and the three mid points of the
sides are concyclic.

If B'U be joined, it will be parallel to CZ, and therefore perpen-
dicular to A’B’ which is parallel to AB.
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Similarly C'U is perpendicular to A’'C';
therefore the three mid points and U are the vertices of a quad-
rilateral inscriptible in a circle ;

and therefore the nine points mentioned are on a circumference
whose radius is R.

SEVENTH DEMONSTRATION (Adams, 1843).
The circle described through the feet of the perpendiculars of a
given triangle passes through the mid points of the sides.
FiGure 5.

Let the circle described through X, Y, Z the feet of the perpen-
diculars cut BC, CA, ABat A', B, C'.
Then, by Carnot’s theorem

CA AB'BC' BX CY AZ
BA'CB'AC ~CXAYBZ'’

= - 1’
since AX, BY, CZ are concurrent.
Now L ACB = L AYZ,
since B, C', Z, Y are concyclic;
and L AYZ = L ABC,
since B, Z, Y, C are concyclic ;
therefore LACB' = 2 ABC.
Hence C'B' is parallel to BC;
AB' AC
£ AL AU
therefore GB ~BO °
AB' BC
heref; = ;
therefore CB AC ;
CA’
theref: i |
erefore BA s

that is, A’ is the mid point of BC.
Similarly B’, C’ are the mid points of CA, AB.

[Adams does not mention the other three points through which
the circle passes. They are mid points of sides of the triangles
HCB, CHA, BAH, and X, Y, Z are the feet of the perpendiculars
of these triangles.]
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BIGHTH DEMONSTRATION (Adams, 1846).

FiGure 9.

Let ABO be a triangle, I, I,, I,, I, the incentre and excentres ;
then I is the orthocentre of the triangle I,I,I; and ABC is the orthic
triangle.

About the triangle ABC circumscribe a circle, and let it meet
AT, at U and LI; at U'. Join UU’, and draw ID, I,D,, I,D,, I,D,
perpendicular to BC.

Because AU and AU’ bisect adjacent angles at A,
therefore ~ UATU’ is right ;
therefore UU’ is a diameter of the circle ABC.

And because the arc BU = the arc CU,
therefore UU’ passes through A’, the mid point of BC
and is perpendicular to BC.

Again since BD,=s =CD,,
therefore D, and D; are equidistant from A.

And since BD =3,=CD,,
therefore D and D, are equidistant from A'.

Lastly, since A’ is the mid point of D,D,,
and since I,D,, I,D; and U’A’ are parallel,
therefore U’ is the mid point of I,I,.

And since A’ is the mid point of DD,,
and since ID, I,D, and UA’ are parallel,
therefore U is the mid point of IT,.

That is, the circle ABC passes through the mid points of I,I, and
II,.

Hence also it passes through the mid points of I,I,, IT,, and I,T,,
II,; in other words, it is the nine-point circle of the triangle I,LI,.

NINTH DEMONSTRATION (Wilkinson, 1855).

FIGURE 8.

Let ABO be the triangle ; X, Y, Z the feet of the perpendicu-
lars ; A’, B, C' the bisections of the sides; U, V, W the bisections
of the lines AH, BH, CH.

Then taking the four points U, C, A’, W,
we have UC’ and WA’ each parallel and equal to 4BH
also UW and C'A’ each parallel and equal to $AC
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and the four points lie in a circle upon UA’ or WC’ as diameter.
Similarly UVA’'B’ is a rectangle,
and the four points U, V, A’, B’ are'in a circle upon UA’ or VB' as
diameter.
But Lt UXA'= L VYB'= £ WZC' =a right angle ;
hence the points X, Y, Z lie in the same circle as the points
U,A,V,B,W,C.

TENTH DEMONSTRATION (Godward, 1878).
Ficure 10.

If the following lemma be assumed :

Let H be any point within or without a circle whose centre is O,
and let AR be any chord passing through H, then the locus of the mid
point of HA or HR is a circle whose centre is the mid point of HO,
and whose radius 18 half the radius of the given circle,
the characteristic property of the nine-point circle follows at once.

For X, Y, Z HR, HS, HT
A', B, C' } are the mid points of { HL,, HL,, HL,
U V,Ww HA, HB, HC.

FEUERBACH'S THEOREM.

The nine-point circle of a triungle touches the incircle and the
three excircles.

FIRST DEMONSTRATION (J. Mention, 1850).

The late M. Richard having asked me several times for a geo-
metrical demonstration of the contact of the nine-point circle, here
is the mode* in which I arrived at it, some time ago.

I propose to draw, through the middle of one of the sides BC, a
circle tangent to the system (r, r,) or (ry, 7).

Let N be the foot of the interior bisector of angle A ; this point
is the internal centre of similitude of the system (», ). Let.D, D,
be the points where (r), (r,) touch BC; A’ the middle point of BC,
and X the foot of the perpendicular on BC from A.

* M. Mention’s notation has been slightly changed.
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This proposition is easily proved
ND'ND,=NA""NX (Nouvelles Annales, III. 496);

thus the required circle passes through the foot of the perpendicular.

Now I choose the middle of the side BC because it is a point on
the radical axis of each of the systems (r, 7)), (*5 73), and I am
brought to this special question :

To find the position of a circle tangent to two given circles and
passing through a point on their radical axis.

This position is fixed very clearly by making use of a solution,
as elegant as it is little known, given for the general case by M.
Cauchy* when he was a pupil of the Polytechnic School, which leads
to the following theorem :

A’ is a point on the radical axis of two circles O, O’; B, B’ the
points of contact of one of the common tangents. The points C, C',
where the lines A’B, A'B’ cut the circles, are the points where the
circle tangent to O, O’ and passing through A’ touches the circles.

The centre of the circle is situated on the perpendicular let fall
from A’ on the common tangent; and if 8 denotes the distance of
A’ from this tangent, its radius is equal to ¢*/28, where ¢ is the
common length of the tangents drawn from A’ to the two circles.

Hence denoting by tang (», 7,) the common tangent to the circles
(r), (r;), and coming back to the original triangle, the perpendicular
let fall from A’on tang (7, »,) contains the centre of the circle
passing through A’ tangentially to the system (», »)).

But tang (7, r,) is perpendicular to the radius of the circumscribed
circle issuing from the vertex A ; therefore this perpendicular is a
radius of the nine-point circle.

That is more than enough to establish the identity of the required
circle and the nine-point circle.

SECOND DEMONSTRATION (1854).
The nine-point circle of a triangle touches the incircle.
Ficure 11.

Let ABC be a triangle, H the orthocentre, I the incentre, O the
circumcentre, and M, the mid point of HO, the nine-point centre.
Join IM, and draw ID, ML perpendicular to BC.

* Correspondance sur l’Iz"cote Polytechnique, 1. 193 (1804).
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Through O draw UU’ a diameter of the circumcircle perpendic-
ular to BC;
from A draw AK perpendicular to UU'.
Join AU, AU, AO, MA".
Then UTU’ bisects BC and the arc BUC;
therefore AU bisects . BAC, and passes through I.
Now OK = AX -0A4A,
=AH +HX-O0A’
=20A'+ HX - 04,
= OA'+HX,
=2ML.

But the triangles AKU’, IDN, having their sides mutually per-
pendicular, are similar ;

therefore U'K:AK =ND:ID;
therefore U'K:A'X=ND:ID;
therefore ID ‘U'’K=A'X'ND,

=A'D'DX.

Hence if from M a perpendicular be drawn to ID,
MI:!=(ID-ML)® +(A'D-A'L),
=(ID-3}0K)* +(A'D-}A'X)
=ID*-1ID-OK +}O0K*+A'D?* - A’'D-A'X +JA'X?
=]O0K*+1A'X?+ID*-ID-OK - A’'D(A’X - A'D),

=10A? +1ID?*-ID-OK - A'D-DX,
== JOA? +ID*-1ID OK -1ID ‘U'K,
=]OA? +1ID*-ID-OU’,

=iR? +7 —Rr,

=(4R-1)";

or, MI=}R-

Lastly, since the distance between the centres of the nine-point
and inscribed circles is equal to the difference of their radii,
therefore the nine-point circle touches the incircle.

The nine-point circle of a triangle touches the three excircles.
Ficure 12.

Let ABC be a triangle, H the orthocentre, I, an excentre, O the
circumcentre, and M, the mid point of HO, the nine-point centre.
Join I,M, and draw I,D,, ML perpendicular to BC.
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Through O draw UU’ a diameter of the circumcircle perpendic.
ular to BC; :
from A draw AK perpendicular to UU".
Join AU, AU, AO, MA'.
Then UU’ bisects BC and the arc BUC;
therefore AU bisects ~ BAC, and passes through T,.
Now OK = AX -0A4A
=AH +HX-0A)
20A’'+ HX - OA/,
OA'+ HX,
=2ML.
But the triangles AKU’, I,D,N, having their sides mutually
perpendicular, are similar ;

[

therefore U'K:AK =ND,:I,D,;
therefore UK:A'X=ND,:I,D,;
therefore ID,'UK=A'X'ND,

=A'D," D, X.

Hence if from M a perpendicular be drawn to I,D, produced,
MIz2=(I,D, +ML)> +(A'D,+A'L),

=(I,D, +310K)* +(A'D,+3A'X),
ID?+I,D,-OK +}0K?*+ A'D* +A'DA'X +1A'X?
=10K*+1A'X? +I,D’ +I,D,0K+A'D,(A'X +A’'D)),

I

=}O0A? +I,D? +I,D,0K + A'D,'D;X,
=]O0A* +I,D? +I,D,OK +I,D, ‘UK,
=}0A® +I,D? +I,D,-0U,

=1iR? +7r® +Rr,

=(@#R+m);

or, MI,= 4R+,

Lastly, since the distance between the centres of the nine-point
and any one of the escribed circles is equal to the sum of their radii,
therefore the nine-point circle touches all the excircles.

THIRD DEMONSTRATION (J. M‘Dowell, 1862).
Ficure 13.
Let ABC be a triangle, H, I, O, the orthocentre, the incentre
and the circumcentre ;
let AX, ID, OA’ be perpendicular to BC.
Bisect AH in U ; join A'U, OH intersecting in M ;
and join I with A, M, U. .
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Produce AI to N, and AX to L making UL equal to UA’,
and join A'L.
Then A’ is the mid point of BC ;
therefore A'U is a diameter of the nine-point circle, and equal to R.
But OH passes through the centre of the nine-point circle ;
therefore M is the nine-point centre,

and MA'= MU =iR.

Again Lt A'UX=20AX =C-B;
therefore £ A’LX is the complement of 1(C - B);
therefore ~LA’X =}(C-B)=NID.

Hence the triangles NID, LA'X are similar ; *

therefore A'X:XL = ID:ND;
therefore ID: XL =A'X-ND;
therefore » XL=A'D'-DX;
therefore rXL+7rUX=A'D DX +»UX;
therefore Rr=A'D-DX+»UX.

Now if from I a perpendicular be drawn to UX,
A'D*+ TU?=A'D* +DX? +(UX -7),

=A’X? -2A'DDX+UX?*-2rUX +7%
=A'X? +UX?-2(A'D'DX +7rUX) +7%
=R* -2Rr+ %

therefore IA”+ TU?=R* -2Rr+2:%

But IA”+ TU2=2MA"+2MI’,

=31R* +2MI*;

therefore 1R?*+2MI*=R?* - 2Rr+2r°;

therefore MI*=}R?* - Rr+17
=(3IR -7y
or, MI = %R -7,

Lastly, since the distance between the centres of the nine-point
and inscribed circles is equal to the difference of their radii,
therefore the nine-point circle touches the inscribed circle.

Suppose now I, to be the centre of an escribed circle, and 7, its
radius ; by changing the sign of 7 in MI=}R -~
we have ML =4iR+r;

* T have supplied the proof that the triangles NID, LA'X are equiangular, and
have omitted the proof that A’X*ND=A'D'DX. It should be added that Mr
M*Dowell does not use the terms orthocentre, incentre, circumcentre or nine-point
circle,
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therefore the circle through middle points of sides and the escribed
circle touch one another externally. Hence the theorem is proved,
but as this last principle, viz., the change of » into—r, is not re-
cognised by Euclid, I shall proceed to give a legitimate geometrical
proof that the circle with centre M and radius R also touches the
three escribed circles.

First, I may remark that only one circle can be described through
the points A’ and X touching the inscribed circle.

For suppose DX less than A'D, produce A'X through X to a
point Y such that A'Y-YX =YD?; the tangents from Y to the in-
scribed circle give the points of contact of the required circle with
the inscribed, but one of these pointsis D, and the circle through
A’, X and D is therefore infinite ; thus only one finite circle can be
described through the points A’ and X to touch the inscribed circle,
This circle is therefore the one with centre M and radius 3R.

Take A'D,=A'D, then D, is the point of contact of the circle
escribed to BC, and N is clearly a centre of similitude of this
escribed circle and the inscribed circle.

By a known geometrical property

A'X-A'N=A'D?;
therefore taking away A'N? from these equals we have
A'N'NX=D,N'ND;
therefore also by another known geometrical property the circle
through A’ and touching the inscribed circle and the circle escribed

to BC must also pass through X ; but by what has just been proved,
this is the circle with centre M and radius 3R.

FOURTH DEMONSTRATION (Binder, 1872).

Ficure 14.

If U be the mid point of the arc BC, then AU bisects not only
£ BAC but also ~ OAX,
because L0OAU= L AUO= L UAX.

Let the circle with centre U and radius UC cut AU at I and
I,, then I and I, are the centres of the incircle and first excircle of
ABC.

These circles touch BC at D and D, and A’is the mid point of

DD,
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Now LtBCU=.BAU= L UAC;
therefore triangle UCN is similar to UAC,
and UNUA= TUC,
= UL
and hence A'N‘A'’X= A'D2

If the radius IK of the incircle be drawn in the direction MA’,
then £ KID = . OAX, and the triangles KIN, DIN are equal and
similar,

Join A'K and let it meet the incircle at T ;
then A'’K-AT= A'D?

= A'NAX;
therefore the points K, T, N, X are concyclic.

Hence 2.ATXor2.KTX=2,.KNXor2.KND

=2 . KID
L A'MX;

]

therefore T lies on Feuerbach’s circle.

From the similarity of the isosceles triangles A’'MT and KIT,
the points M, I, T lie on a straight line, and Feuerbach’s circle is
touched internally by the incircle.

In like manner F
circle whose centre is

Figure 15.

Let A’, C' be the middle points of BC, AB; AN the bisector of
A ; AX perpendicular on BC ; I centre of inscribed circle; D its
point of contact with BC; D, the point of contact of escribed circle ;
A'U diameter of nine-point circle.

It is easy to prove that A’X-A’'N=A'D? (see M‘Dowell’s Exer-
cises on Euclid, Art. 86). Hence if A’ be centre, and A’D? constant
of inversion, the inscribed circle will invert into itself, as will also
the escribed touching at D, since A'D,=A'D;
while the nine-point will invert into a straight line perpendicular
to A'U, making therefore with BC an angle

=A'UX=A'CX=BCX-BCA’
=2BAX -BAC =BAX -CAX =C-B.
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Now NS the tangent from N to inscribed circle which also
touches the escribed circle makes with BC an angle

=DIS=2DIN=2XAN=C-B.

Therefore this line is the inverse of the nine-point circle. And
as it touches the inverse of the inscribed circle and the inverse of
the escribed circle, the nine-point circle touches the inscribed and
the escribed circles.

If T be the point of contact of the inscribed and nine-point
circles, the tangent to the inscribed circle at that point can readily
be proved to touch the nine-point circle without using the theory of
inversion.

[This is done in Johnson’s T'reatise on Trigonometry, p. 139
(1889).]

SIXTH DEMONSTRATION (B. M. Langley, 1876).
FI1GuURE 16.

Lemma.

A’ is any fixed point ; B,C, a fixed straight line touching a fixed
circle at P ; K is any other point on B,C,.

Tf along A'’K there be taken A'B’ such that

‘'K-A'B’'=square of tangent from D to fixed circle
=~ ... another fixed circle touching the first and passing
thmué..

Let A'P cut the first circle again in Q,
and let QR be the tangent at Q.

[R must always be taken on the opposite side of QA’ to B, when
the circle is on the opposite side of B,C, to A’, and always on the
same side of QA’ as B’ when the circleis on the same side of B,C, as
A’

Then A'K'A'B'=A'P-A'Q,
therefore B, K, P, Q are concyclic ;
therefore ~ A’'B'Q= . APK= L RQP;
therefore B’ lies on a fixed circle through A’ and Q touching RQ,
and therefore the first fixed circle at Q.

The nine-point circle of a triangle touches the incircle and the
excircles.

Consider the incircle and that excircle which touches BO between
Band C.
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"The sides of the triangle are three of the common tangents to
these two circles. Let the fourth common tangent B,NC, be drawn
cutting AC, CB, BA in B, N, C,. Let A’, B, ¢' be mid points of
BC, CA, AB.

Then evidently AB, = AB, AC,=AC,
and AN is the internal bisector of L BAC;
therefore AN bisects CC, at right angles ;
therefore A'B’ passes through W, the point where AN cuts CC,.

If D, D, be the points of contact with BC,

A'D,=A'D=}(AB-AC)=}BC,=A'W.
Let A’B, A'C’ cut B,C, in K, L.

Then AK:A'W=BC,: BA=A'W:A'B;
therefore A'K-A'B =A'W?= A'D’=A'D2
Similarly AL-AC = A'D*=A'D?;

therefore B', C' lie on the circle through A’ touching the incircle and
the first excircle.
If ¢ external ” be written for “internal” and

AB+ AC for AB-AC

the preceding investigation applies to the remaining excircles.

SEVENTH DEMONSTRATION (Chadu, 1879).
Ficure 17.

ABC is a triangle ; D,, D; are the points of contact with BC of
the excircles I, I;; D,, Dy are the points of contact of these circles
with the other exterior common tangent; N’is the point of inter-
section of D,D; and D,'Dy’; A’ is the mid point of BC.

1°. The perpendicular AO drawn from A to D,' Dy passes through
the circumcentre of the triangle ABC.*

2°, If U be the point of intersection of the straight lines AX,
A'K respectively perpendicular to BC, D,'Dy,
the circle described on A'U as diameter is the nine-point circle of
the triangle ABC.

That being premised, we have

AU A’K=AX"A'N".

* Because BC D3a/Ds’ are antiparallel, £ BAO is equal to the complement of
. ACB,
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But N’ being the point of intersection of the side BC and the
bisector of the exterior angle A of triangle ABC,
_(AB+AC\*_D,D;
U2 T4

A'X-A'N’ =A'DS2.

If A'D, cut the circumference I, at L,
A'L;A'D/=A'D2=A'C-A'K;
therefore L UL,D,’ is right.

And since the lines I,D,, A’K are parallel,
the circumference described on A'U as diameter is tangent at L, to
the circumference I,.

In the same way, the point L; where A'D, cuts the circumfer-
ence I, is the point of contact of this circumference with the nine-
point circle.

In the same way again, the nine-point circle touches the incircle
I and the excircle I,.

Iet D, D, be the points of contact with BC of the circles I, I, ;
D', D, the points of contact of these circles with the other interior
common tangent; N the point of intersection of DD, and D'D/’;
K’ the point of intersection of A'U and D'D/’.

We have AU-AK=A'X-A'N,

But N being the point of intersection of the side BC and the
bisector of L A,

AXAN= (AB - AC)’ ~DD’_ orpe,
2 4
If A’D’ cut the circumference I at L,
A'L:'A'D'=A'D?-AU-A'K’;
therefore £ ULD' is right.

And since the lines 1D’, A’K’ are parallel,
the circumference described on A'U as diameter is tangent at L. to
the circumference I.

In the same way, the point L, where A'D,’ cuts the circumfer-
ence I, is the point of contact of this circumference with the nine-
point circle, ’
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EIGHTH DEMONSTRATION (W. Harvey, 1883).
Ficure 18.

Of the triangle ABC, O is the circumcentre, H the orthocentre,
and A’ is the mid point of BC. .

OA’ produced bisccts the arc BC in U ; I the incentre lies on
AU and is so situated that AI'TU=2Rr; also . XAU= . AUO
= £ OATU.

M, the centre of the nine-point circle, bisects the distance HO,
and the circumference passes through A’, X, and K the mid point of
AH. Hence M bisects both A’K and HO, and OA’=HK=AK;
therefore A’K is parallel to OA.

MLP is a radius of the nine-point circle, bisecting the chord
XA’ in L and the arc XA' in P ; ID is a radius of the incircle.

Since the arc XPA' is bisected at P,
therefore L XA'P=half L XKA/,

=half 2 XAO,
=.XAUor . AUO.

Hence if through I we draw a straight line (not shown in the
figure) parallel to BC to meet AX and OU, the segments of this line
are respectively equal to XD and A'D,
and we have by similar triangles

XD:IA =LP:PA/,
A'D:IU =LP:PA’;
therefore =~ XD-A'D:AI'IU =LP%:A'P?
But AI-IU =2R7, and A'P’=R'LP;
therefore XD:+A'D =2LP;
hence AL?-LD*=XD'A'D =2rLP.
Now IM2 =(ML-r)® + LD?,

=(ML-7r)* + A'L*- 2sLP,
=ML?*+ A'L?- 2r(ML + LP) + 72,
=1R? —rR+7%;

therefore IM =R -1,

and the tangency of the circles is evident.

NINTH DEMONSTRATION (G. Richardson, 1888).
Ficure 19,
In triangle ABC, H, O, I, M are orthocentre, circumcentre

incentre, nine-point centre. UU’, QQ’ are diameters of the circum-
circle and nine-point circle perpendicular to BC. I is situated on
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AU, and QQ’ bisects the chord A’X at L and thearc at Q. Through
I a parallel to BC is drawn meeting UU’ at S and AH at T ; the
rest of the construction is obvious from the figure.

Since C' is the mid point of the hypotenuse of ABX,

therefore L XC'B =180°-2B.

Now LA'CB=A H
therefore LXCA'=180°-2B-A;
therefore £XQQ = 90°-B-}A

= L BAX - L BAI
= L TAX,

Hence triangles QQ’X, QXL, IAT, IUS are similar ;
AD IS QX QX

therefore B CTT Q9 3
DX _IT QL
Al Al QX
BU BU IF r .
But 2R _UU Al AL’
A'D DX BU QX QL «~
herefi = .
therefore BU AT 2R R QX AT’
therefore A’'D'DX =2rQL;
therefore iR?*- MD*=2rQL.
Now MD?+ ID? - MI*=2ID-ML;

therefore, by addition,
IR+72-MI=2rMQ=Rr;
therefore MI*= (3R -7)%

ADDITIONAL PROPERTIES.

(1) The nine-point circle of ABC is the nine-point circle of HCB,
CHA, BAH, for it passes through the mid points of their sides;
hence the circumcircles of these triangles are equal.

In naming these triangles the order of the letters is such that X
is the foot of the perpendicular from the first named vertex, Y the
foot of that from the second, and Z the foot of that from the third.
This is a matter of much more importance than appears at first

sight.
(2) If P be any point on the circumcircle of ABC, and H the
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orthocentre, the locus of the mid point of PH when P moves along
the circumference is the nine-point circle.

See Godward’s demonstration of the characteristic property of
the nine-point circle.

(8) The nine-point circle bisects all straight lines drawn from
the orthocentre H to the circumcircle ABC ; hence the nine-point
circle bisects all straight lines drawn from A to the circle HCB,
from B to the circle CHA, from C to the circle BAH.

(4) If straight lines be drawn from the incentre or any one of
the excentres of a triangle to the circumference of the circle passing
through the other three centres, they will be bisected by the circum-
circle. .

(5) Since the nine-point circle touches the incircle and the ex-
circles of ABC, it touches also the incircle and the excircles of HCB,
CHA, BAH.

(6) If A’, B, C', the mid points of the sides of ABOC, be taken
as the feet of perpendiculars of a second triangle A,;B,C,, the nine-
point circle of ABC will be the nine-point circle of A,;B,C,, and
hence will touch another set of 16 circles.

Again take the mid points of the sides of A,B,C, and make them
the feet of perpendiculars of a third triangle A,B,C;. Another set
of 16 circles will thus be obtained which are all touched by the nine-
point circle And this process may be carried indefinitely far.

It will be found that these successive triangles A;B,C,, A,B,C,,
and so on, approximate more and more to an equilateral triangle ;
and consequently that the nine-point circle of ABC will not only be
the nine-point circle of the limiting triangle, but also the incircle of
it.

(7) Instead of taking the mid points of the sides of ABC and
making them the feet of the perpendiculars of a second triangle,
take the feet of the perpendiculars of ABC and make them the mid
points of the sides of a second triangle. There is thus obtained
another set of 16 circles all touched by the nine-point circle ; and
this process also may be carried indefinitely far.

(8) Thirdly take the U, V, W points and make them either the
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mid points of the sides, or the feet of the perpendiculars, of a second
triangle, and other sets of circles are obtained all touched by the
nine-point circle.

(9) Lastly, take a circle whose centre is O, radius R, and any
point H inside it. It will be seen that H may be the orthocentre
of an indefinite number of triangles inscribed in ABC. The nine-
point circles of these triangles are all equal since their radii are }R,
and their centres are at the mid point of OH ; hence this indefipite
number of triangles have all the same nine-point circle, and their
incircles and excircles are all touched by it.

(10) If through the vertices of ABC straight lines be drawn
parallel to the opposite sides, a new triangle A,B,C, is formed, and
the nine-point circle of ABC touches the nine-point circles of the
triangles A,BC, B,CA, C,AB at the mid points of BC, CA, AB.

(11) If the perpendicular AX of ABC be produced to A, so that
A X is equal to AX, and if through A, there be drawn A,;B, parallel
to AB, and A,C, parallel to AC, and these parallels meet BC at
B,, O, the nine-point circles of ABC, A,B,C, touch each other
at X, -

(12) If through A’, B/, C', and U, V, W two sets of three lines
are drawn parallel to the external bisectors of the angles A, B, C
respectively, two new triangles will be formed having the same nine-
point circle as ABC.

o

(18) If I’ denote the centre of any one of the excircles of the
triangles ABC, HCB, CHA, BAH, the nine-point circle of ABC
touches the common tangent of the circle I' and the circle described
on MI’ as diameter.

(14) If H be the orthocentre of ABC, and on HA, HB, HC
three points U’, V', W' be taken such that

HU'=HA/n, HV'=HB/n, HW'=HC/n;
and on HA', HB, HC' three other points A", B”, C” such that
HA"=2HA'[n, HB"=2HB'/n, HC"=2HC'/n, then
(a) The lines U’A”, V'B”, W'C" intersect on the line HO in a
point M’ such that HM'=HO/n.
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(b) The six points U’, V', W', A", B", C" lie on a circle whose
centre coincides with M', and whose radius is R/n.

(15) If A, B, C, D, E be five points on a circle, the consecutive
intersections of the nine-point circles of the triangles ABC, BCD,
CDE, DEA, EAB lie on another circle whose radius is one half that
of the first.

(16) In triangle ABC the circles described on AG, B'C', BC as
diameters are coaxal. If G’ bea point on A’H such that A'G'=3A'H,
and A" a point on AA’ produced such that AA”=2AA’, the nine-
point circle of the triangle is coaxal with the circles described on
AG’ and HA” as diameters.*

(17) If OA’' be produced to A, so that A’A;=O0A’, and similar
constructions be made with OB, OC’, a new triangle A;B,C, is
obtained of which O is the orthocentre, H the circumcentre, and the
nine-point circle coincides with the nine-point circle of ABC.}

(18) If from a point P on the circumcircle of a triangle, whose
orthocentre is H, perpendiculars PD, PE are drawn to two of the
sides, then HP, DE intersect on the nine-point circle.}

(19) From the ends of a diameter of a given circle perpendiculars
are drawn on the sides of an inscribed triangle ; the two Wallace
lines thus obtained intersect at right angles on the nine-point circle
of the triangle.§

(20) Let AA’, BB/, CC' be the medians of triangle ABC, inter-
secting in G; let AX, BY, CZ be the perpendiculars from the
vertices on the opposite sides intersecting in H ; and let B'C’, YZ
intersect in U ; C'A’, ZX in V; and A'B, XY in W. Then AU,

* (10){16).—Mr J. Griffiths in Mathematical Questions from the Educational
Times, II. 69 (1864); III. 102, 76 (1865); IV. 60 (1865); V. 72 (1866); VII.
57-8, 76 (1867).

+(17) T. T. Wilkinson in Mathematical Questions from the Educational Times,
VI. 25 (1866).

1(18) Dr C. Taylor in Mathematical Questions from the Educational Times,
XVII. 92 (1872).

§ (19) Mr R. Tucker in Mathematical Questions from the Educational Times
III, 58 (1865).
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BV, CW will all be perpendicular to GH ; and the triangle UVW
will circumseribe the triangle ABC.

Let N, P, Q be the feet of the interior bisectors of the ungles
A, B, C, and N, P, Q' the feet of the exterior bisectors; then the
six straight lines UN, VP, WQ, UN’, VP, WQ' pass three and
three through four points which are the points of contact of the
nine-point circle with the inscribed and escribed circles.*

' Geometrical Note.
By R. Tucker, M.A.

If in a triangle ABC, points are taken on the sides such that
BP:CP=CQ: AQ=AR:BR=m:2=CP': BP
=AQ:CQ'=BR’': AR’
then the radical axis of the circles PQR, P'Q'R’ passes through the
centroid and “S.” points of ABC; and if QR, QR’' cut in 1,
RP, R'P' in 2, PQ, P'Q’ in 3, then the equation to the circle 123 is
' abcZafy =mnZaa.Zaa{ — mna® + (m* + mn + n?)(b* + &) }.
Ficure 20.
The points P, Q, R are given by
(0, ne, md), (me, 0, na), (nb, ma, 0),
i.e, P, in trilinear co-ordinates, is (0, nc sinA, mb sinA), etc. ;
and P, Q, R’ by
(0, me, nb), (ne, 0, ma), (mb, na, 0).

It is hence evident that the pairs of triangles are concentroidal
with each other and with ABC.

It is also evident that PQ’, P'Q are parallel to AB, and so on;
also that P'Q, PR’ intersect on the median through A ; and so on.

The triangle PQR = (m? — mn + n?)A = the triangle PQ'R'.

The equation to the circle PQR is

(m? — mn + n*)abe.Z(afy) = mnZ(aa).Z(ao. — mna® + m?* + n’c?),
and to P’Q'R’ is

(m? = mn + n?)abe.Z(afy) = mnZ(aa).Z(aa. - mna? + nb* + mic?).

*(20) Rev. W. A. Whitworth in Mathematical Questions from the Educational
Times, X. 51 (1868).
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The radical axis of these circles is, therefore,
2(aa.b®~'c*)=0, hence ... (1).

The radical axis of either of the circles and of the circumcircle is
of the form PP -1Q+ R=0, where P, Q, R are linear functions of
a, B, v ; and the envelope of each of these axes is the conic

@a+ BB + ) = d(abla+ b + cay)(acta +ba?B+cb%y) ... (a).
% Y

The tangents in (a) intersect in the point aa/(a* - &c*)=...=....
The radical centre of the three circles is

aa/[a} — b*c* + mnk(k — 3a®)]=...= ... ;
where k=a®+0*+c
The equations to QR, Q'R’ are
—mnaa+n':bﬁ+m*cy=0 (b),
— mnao+m?B+n*cy=0

and 1, their point of intersection, is on the median through A, and
is given by
aa/(m? + n?) = bB/(mn) = cy/mn.
Similarly 2, 3 are
aa/mn=>b0)(m*+n?) = cy[mn,
aa/mn =bf/mn = cy/(m?®+ n?).
The above lines (b) envelope the parabola a’a® = 4bcfy, and so on.
The triangle 123 is readily found to be
=(m? — mn + n?)?A.
The circle 123 has its equation
abe Z(afy) =mnZ(aa).Z{aa. - mna®+ (m?+mn+n?)(i*+¢?)} ... (2)
The radical axis of this circle and the circumcircle can be written
(1 - mn)kZ(aa) =Z(a’a),
hence it is a straight line parallel to the chord of contact of the
conic (a).
The lines PR, P'Q), ... intersect in 4, 5, 6, given by
aa/(mn - n*) =bB/m*=cy/m’ ...,

showing that these points are also on the medians, as is evident from
the symmetry of the figure.
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The lines PR/, P'Q, ... intersect in p, ¢, », where p is given by
aaf(m - n)=bB/n=cy/n.
The conic through PP'QQ'RR’ has for its equation
mn(aa+bB + cy)* =bcfy +caya+abaf ... (4),

which, in the figure, is an ellipse, concentric, similar and similarly
situated with the minimum circum-ellipse of ABC.
The polar of A, with regard to (4), is
2amna — (m*+1°)(bB +¢y) =0,
therefore it is parallel to BC, and cuts AC in J (say); so that
AJ =2mn.AC. The triangle formed by the three polars (for

A, B, C)is
=4(m? - mn +22)?A.

The tangents to the conic at P, P’ are given by
ao(m?® +n?) + bBm(m — n) — cyn (in - n) =0,
aa(m?®+n?) — bBn (m — n) + cym(m - n) =0,

and intersect, on the median through A, in the point
aa b6 cy

= = )
—(m—=n) nl4+n* mF+nl

and the triangle formed by this and the corresponding points equals
the above triangle.

To find the ¢ 8.” points of PQR, P'Q'R/, assume the sides of these
triangles to be p, ¢, 7 ; p', ¢, ¥’ ; then

P* =m?c® + n?b? — ImnbceosA oto. — ete, ©
p?=m? + P - 2mnbecosA) "2

2(p*) = (m? = mn +27)(a® + b* + ¢*) =K (suppose) = Z(p").
The “8.” lines through Q, R, respectively, are

@ B Y « B Y
nber? ca(mr® + np®) mabp® |, | mbeg® ncap® (mp*+ng¥ab |,
me 0 na nb ma 0
€., — naa(mr® + np?) + (1°r* — m*p)b + mey(ma® + np?) =0,

maa(mp® + ng®) — (mp® + ng*mbL — cy(m’e* - n*p®) =0;
whence we get, for the « 8.” point of PQR(K,),

ae BB ey
m@+nr* mr +np*  mp?+ng®

24
-
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Similarly, for the “8.” point of P'Q'R'(K,), we have

ae B ey 24
ng?+mr? ' tmp? mp?+mg® K

The triangle 123 is directly in perspective with ABC, and has
the centroid of the triangles for centre of perspective ; hence we can
readily obtain the co-ordinates of the principal points.

For (1) the “8.” point

aaf[a® + mn(b*+* + 2a%)]=...=...;;
(2a) the positive ¢ B.” point

aa/[(m?+ n*)c’a? + mnb (*+a%)]=...=...;
(26) the negative ¢ B.” point

aa/[(m® + n?)a’d? + mnc®(a® + b)) ]=...=... ;
(3) the in-centre

ac/[a(m®+n?) + (b+c)mn]=...=...;
(4) the orthocentre

a/[(m* + n*)cosBeosC + mncosA]=...=... ;

(5) the circumcentre ,
a/[(m*+ n*)cosA + mncos(B-C)]=...=....

It is readily seen that the lines (AP, BQ), (AP’, BQ') intersect
on the conic c¢?y*=abafB, which touches CA, CB at A and B, and
passes through the centroid.

The co-ordinates of the centre are

{3(2csinB), 1(2csinA), }( —asinB)} ;
like results hold for the other points of intersection.

[The preceding Note consists of a solution of Questions 11599
and 11670 of the Educational Times, and is published in vol. lviii.
{pp. 119-123) of the *“ Reprint” from that journal. It is given
here with the editor’s kind consent.  Part also of Question 11599
was proposed by Prof. Neuberg as Question 787 of Mathesis.
In the number for January 1893, Prof. Neuberg points out that
(a) supra is a conic touching the Brocardians of the Lemoine-line,
where they meet the reciprocal of that line.]
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Note of Newton’s Theorem of Symmetric Functions.
By C. Tweebig, M.A., B.Sc.
It can be shown as follows that Newton’s Theorem can be
derived from elementary considerations without making use of the

idea of an equation and its roots.
Let F.S. denote indiscriminately any function of «, a,... e,

which can be expressed in terms of Zu;, Za,a, Za,a,0, etec.

Then S, =20, =F.8S.
F.8.=(Z,)*=2a? + 22a,a, = Za,* + F.S.
3o ?2=F.S.

(Za;)*=(Za,® +F.8.)%q,
=2Za? +2a2a,+F.8.

and .-, 3f 2a,%a,=F.8. we have
] Za’=F.8.
and ()’ =20, +F.8.

Similarly Za,)t =20 +2a’e,+F.8.
=2a,* +F.8. if Za,’a, be F.S,, and so on.

Assume this is true up to 2a", to show it is true for Za, .,
We have (Za,)'=F.8.=2a;" +2a,%a,+F.8,
(Eal)’ = =Za" +2a, ¢, +F.8S.
=2q," +F.8. by assumption,
while Za,"%a, ; Za,"a, are F.S,
Now (Za,)" 1 =F.8, =(2¢,)Za, =2, 4+ Za)"a, + F.8S.
if then we can show Za,"a,=F.S. so will also Za,",
Now  (Sa)*=3a(Se) = Sa{Zay + Zar o, + FS} ~
= zalr-{-l + 22(1{% + Eal""a,’
+2a," a0, + F.S.
= (2, + Za,"ay’) + 22a,"ay + Za;"laa; + F. 8,
= Zq"! Zq? + 2Za,"ag + 2a," a0, + F.S.

=F.8. +22a,"ay + Za,"ay0, + F.S.
- 23a"ay + 2o, a0y =F.8, ... (1).
Again, (Ca,™")2e,0,=F.8.
w6, 2a7ay+ 2, aa;=F.8, e 2).

From (1) and (2) by subtraction
Zaa,=F.8. - F.8.=F.8
Za, ' = (Za,) ' - F.8. - F.8,
A =F.8.
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Third Meeting, January 13, 1893.

C. G. Kxorr, Esq., D.Sc., F.R.S.E,, in the Chair.

The Quaternion and its Depreciators.
By Prof. C. G. Kvort, D.Sc., F.R.S.E.

Of late years there has arisen a clique of vector analysts who
refuse to admit the quaternion to the glorious company of vectors.
There are others again who take exception to some of Hamilton’s
most fundamental principles, and make corrections as they deem
them, which logically revolutionise the whole basis of the calculus.

These rebellious ones do not agree at all amongst themselves ;
but their disloyal sentiments may be conveniently discussed under
three headings.

First, there is the broad question as to the value of the quaternion
as a fundamental geometrical conception.

Second, there is the question of notation.

Third, there is the question of the sign of the square of a vector
when quaternion expressions are to be transformed into ordinary
algebraic expressions.

In discussing these points, I shall give what seems to me to be
the most natural geometrical approach to the calculus of quaternions.
The position of the innovators will thus be better understood.

I. THE QUATERNION AS A GEOMETRICAL CONCEPTION.
(Fieures 21, 22, 23).

In the preface to the third edition of his Quaternions, Professor
Tait speaks of Professor Willard Gibbs as one of the retarders of
quaternion progress, and of his system of notation as ‘“a sort of
hermaphrodite monster compounded of the notations of Hamilton
and Grassmann ” Professor Gibbs, in a letter published in Nature,
April 2, 1891, virtually admnits both impeachments. For he pro-
ceeds to give reasons for his antagonistic attitude, first, to Quater-
nions as an algebra of vectors, and, second, to Hamilton’s notation.
His objection to Hamilton’s selective system of notation is based
upon the dogma that the quaternion product cannot claim a funda-

a
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mental place in a system of vector analysis. In support of this
contention, Professor Gibbs presents a broad argument from geo-
metry, which he thinks he strengthens by a reference to trigono-
metrical usage. He says:—

It will hardly be denied that sines and cosines play the leading
part in trigonometry. Now the notations Vaf and Sof represent
the sine and cosine of the angle included between a and B, combined
in each case with certain other simple notions. But the sine and
cosine combined with these auxiliary notions are incomparably
more amenable to analytical transformation than the simple sine and
cosine of trigonometry, exactly as, etc., etc.”

What does this argument amount to? Certainly no quaternionist
ever denied the importance of the sine and the cosine in trigono-
metry ; and Hamilton was unquestionably the first to show forth
the analytical power of the functions Sa8 and Vaf. But because
these functions are so incomparably more amenable to analytical
transformation than their trigonometrical ghosts, are we to infer
that they are necessarily superior to or more fundamental than
anything else ? Yet that is the remarkable logic we are treated to.

Mr Heaviside, in his series of articles on ¢ Electromagnetic
Theory,” published in the Electrician, seems to be referring to this
argument when he says:—¢The justification for the treatment of
scalar and vector products as fundamental ideas in vector algebra is
to be found in the distributive property they possess.” A fortiort,
the justification for the treatment of the quaternion product as a
fundamental idea in vector algebra is to be found in the distributive
and associative property it possesses.

Moreover, as Professor Macfarlane points out, the angle itself is
of greater fundamental importance than its sine or cosine. So, on
the principle of answering a wise man according to his wisdom, I
say :— :

It will hardly be denied that angles and their functions play the
leading part in trigonometry. Now the notation a3~ represents the
angle included between a and B combined with certain other simple
notions. But the angle combined with these auxiliary notions is -
incomparably more amenable to analytical transformation than the
simple angle of trigonometry, and so on—which statement proves
just as much and just as little as the great original itself.

But the real argument advanced by Professor Gibbs is as
follows :—
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¢ Vaf represents in magnitude the area of the parallelogram de-
termined by the sides a and S, and in direction the normal to the
plane of the parallelogram. SyVaf represents the volume of the
parallelepiped determined by the edges aBy. These conceptions are
the very foundations of geometry.* . . . I do not know of
anything which can be urged in favour of the quaternion product as
a fundamental notion in vector analysis, which does not appear
trivial or artificial in comparison with the above considerations.
The same is true of the quaternionic quotient and of the quaternion
in general.”

“ These conceptions ”—what conceptions? It can hardly be the
conceptions of vector and scalar products of vectors, for these are
altogether of the nineteenth century, whereas geometry is of all
centuries. It must then be simply the conceptions of the parallelo-
gram as the typical area, and of the parallelepiped as the typical
volume. But to speak of these conceptions, and these conceptions
only—as must be understood if the argument means anything—to
speak of theseas the very foundations of geometry is surely a mis-
use of terms, to put it most mildly. Is not the inclination of two
lines as fundamental a conception as either of these? Indeed,
underlying all the recognised theorems of parallelograms and
parallelepipeds there is the great axiom of parallel lines. That lies
at the foundation of geometry, if anything so lies.

To appreciate the real character of this argument, let us consider
the meaning and purpose of a vector analysis. Having formed the
conception of a vector, we have next to find what relations exist
between any two vectors. We have to compare one with another ;
and this we may do by taking either their difference or their ratio.
The geometry of displacements and velocities suggests the well-
known addition theorem

a+d= IB )
in which, by adding the vector 8, we pass from the vector a to the
vector 3. But this method, which is always given first as the
simplest, does not seem to me to be more fundamental geometrically
than the other method which gives us the quaternion. When we
wish to compare fully two lengths, ¢ and b, we divide the one by the
other. We form the quotient a/b, and this quotient is defined as
the factor which changes b into @. Now a vector is a directed

* The part omitted here is the part already given about the sines and cosines,
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length. By an obvious generalisation, therefore, we compare
two -vectors by taking their quotient «/B, and by defining this
quotient as the factor which changes the vector B into the
vector a. This is the germ out of which the whole of vector
analysis naturally grows. A more fundamental conception it is
impossible to make. Yet Gibbs calls it trivial and artificial! Far
more fundamental—we are told—are the conceptions of a vector-
bounded area and of a vector-bounded volume, whose bounding
vectors may have an infinity of values. Again, a vector is an
embodiment of direction ; and to know how to ehange a direction is
surely demanded of a vector analyst from the very beginning. But
a change of direction is an angular displacement—that is, a versor.
Or take the case of a body strained homogeneously. The vector
joining any pair of points changes by a process which is a com-
bination of stretching and turning. A simpler description cannot
be imagined. It is completely symbolised by the quaternion with
its tensor and versor factors. And this, we are taught, is trivial
and artificial ! On the contrary, so fundamental and natural is the
conception of the quotient of two vectors that it can be made intel-
ligible to any one. We all unconsciously perform the operation
when estimating the time that must be allowed to catch a train.

There is a certain superficial plausibility in the argument that
the quaternion product of two vectors is in that form less suggestive
of geometric significance than the scalar and vector parts taken
severally. But when Professor Gibbs says that ‘the same is true
of the quaternionic quotient,” he invites the severest criticism. For
not only is the quaternion quotient, as a geometrical conception,
more fundamental and direct than its own scalar and vector parts ;
but, if semplicity of conception be a guide, it is infinitely more fun-
damental than even the much-lauded vector and scalar products.
To a quaternionist, however, the product «f is fundamentally as
intelligible as the quotient ; for it is simply o/8~%

Professor Gibbs would have us base the whole of vector analysis
on the two geometrical ideas embodied in the formulae Va8 and
~8yVaB. These are defined, and from the definitions, combined
with recognised geometrical truths, the calculus is developed.
Clifford, in his Dynamic, starts in this very way ; and such a method
may have an apparent advantage in introducing an otherwise igno-
rant student rapidly to the merits of a concise and expressive nota-
tion. It is “spoon meat,” as Mr MacAulay puts it in his recent
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letter to Aature (December 15, 1892). But the average student
will probably make little real progress along these lines. He will
probably fail to grasp the unity of the calculus as developed from
its broad quaternion basis. His faith—his credulity indeed—is
severely tested from the very outset. Certain geometric conceptions
are put forward and represented by a symbolism of a distinctly
arbitrary character. For example, Vaf does not really mean the
area of the parallelogram determined by the vectors a and 3, but is
a mode of representing that area by a vector line perpendicular to
its plane.* And, again, the transition from the parallelepiped
SyVafB to the uniplanar projection Sy3 cannot but seem to be a
piece of legerdemain, involving the transformation of an area into a
line. The method requires indeed a succession of definitions, and a
careful geometrical discussion of the properties of the quantities so
defined. In quaternions, however, the whole is a beautiful and
compact development from the fundamental conception of the
factor (a/B) which changes B into a. Corresponding to every
such quaternion, there is another quaternion known as the conju-
gate, which will turn B into a particular vector a’, equal in length
to a, but lying equally inclined to B on the opposite side of it. In
short, aBa’ lie in one plane, and o' is, so to speak, the reflection of o
in B (regarded as a mirror).

The geometry is of the very simplest. Suppose, for example,
that the quaternion a/B does not change the length of B, but simply
its direction—in other words, that it is a versor merely.

Call it ¢, and its conjugate Kq. Then if OB, OA, OA’ (Fig. 21)
are f3, a, o' respectively, we get at once

¢.OB=0A or g¢fB=a
Kq.OB=0A' or Kgfi=ad'

Hence (¢+Kg)B=a+d
=00
=8 x 2cosb,
and (Q'KQ)IB=“—""=0_D
=OB'.2sind.

But OB’ is simply OB turned through a right angle. Hence if

* This is very clearly brought out in O’Brien’s system of vector analysis, briefly
described further on,
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we take ¢ to represent the quadrantal versor, having the same axis
as g, OB'=1ip.

Thus we get
g+ Kq=2cosf
q - Kq = 2isind,

That is, the sum of a quaternion and its conjugate is a scalar
quantity ; while the difference is a quadrantal quaternion, changing
the length of the vector on which it acts in the ratio of 1 to 2sin6.

The quadrantal quaternion is evidently of great importance, and
it has a property of peculiar value.

Thus let %’ be any two given quadrantal versors, and let them
be represented by double arrow-headed unit lines in the directions
of their axis, as shown in Figure 22.

Take the unit vector at right angles to both. Then assuming
the distributive law, we have

(i+4)B=if+ipB

=a +a.

But if we construct on ¢ and ¢’ a parallelogram like that which
gives us the resultant vector a + o/, we get for its diagonal a directed
line parallel to the axis of the quaternion which will turn 8 into
a+a’. Not only so, but the length of this diagonal has the same
ratio to the length of o+ ', which the length of ¢ (or ¢') has to the
length of 8. We may therefore regard this diagonal as representing
the quadrantal quaternion (7 +¢'). The conclusion is that quadrantal
versors and (by an easy extension) quadrantal quaternions are com-
pounded just like vectors. Since, so far, no definition of a vector
acting on another vector has been given, we may (if no inconsistency
arises) identify quadrantal quaternions and vectors. It is this
identification which so wonderfully simplifies the calculus, and yet
in no way destroys its generality. 'We shall refer to this later on.

Meanwhile the point to be noted is that, with this identification
of quadrantal quaternion and vector, we conclude that

g+ Kqg=2Sq, a scalar.
q—-Kq=2Vgq, a vector,

where the meanings of 8¢ and Vg are easily detected. If ¢ is a
versor, Sq is the cosine of the angle through which ¢ turns a vector
perpendicular to its axis; and Vg is the vector (or quadrantal
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quaternion) measured along this axis, and of length equal to the sine
of the same angle. By a simple extension, if a and b are the lengths
(or tensors) of a and B, we find

55575
where S% = %0080 and V.'li; = i%sinO.

And now consider the result of operating by two quadrantal
versors in succession.  Let ¢'t” be these versors (Fig. 23). Draw the
planes perpendicular to them, and let y be a vector along the line
of intersection. Take 8 perpendicular to y and 7, so that /B=17.

Then ill(ilp)=illy=a’
or, assuming the associative law, we get
i"V.B=a.

Hence "¢ is the quaternion /B, which (as is obvious from the
figure) has its axis perpendicular to ¢ and ¢”, and turns 8 through
an angle equal to the complement of the angle between ¢’ and ¢".
Consequently we find, 6 being the angle between ¢ and <",

e a
Si"i= S__= —cosf
Vi'i Va isinf.
T 1=V—= 181nv,

From this we readily see that, with the identification of vectors
and quadrantal quaternions,

o3 =8B+ Vap,
and Saf = — abcosf
Vaf = i.absinb,

where 4 is a unit vector perpendicular to the plane af3. Thus the
geometric meanings of Sa3 and Vo grow naturally out of the original
conception of the quaternion quotient of two vectors, taken in con-
junction with the identification of vectors and quadrantal quater-
nions, and with the assumption that the distributive and associative
laws hold.

In any vector analysis which begins by separately defining the
parts of the complete quaternion product, there is a want of cohesion
from the very beginning, and there is nothing that can be compared
with the beauty and solidarity of the quaternion calculus.
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Take, by way of comparison, the symbolic algebra of the Rev.
M. O’Brien, to which the systems affected by Gibbs, Heaviside, and
Macfarlane have a strong family likeness. O’Brien, at that time
Professor of Astronomy and Natural Philosophy in King’s College,
London, published his most important paper in the Philosophical
Transactions (1852). He begins by defining what he calls the
longitudinal and lateral translations of the vector 8 with reference
to the vector a. These are symbolised as products in the form a x 8
and a.f—the reason being because they are distributive. It is
readily seen that a x 3 is the product of the lengths of a and B8 into
the cosine of the angle between them; in fact, Hamilton’s — Saf,
Grassmann’s “inner” product, and Gibbs’s “direct” product (a.8).
In a.8 O’Brien recognises the area of the parallelogram, of which
a and B are the sides. In developing his system, he finds that the
line perpendicular to the plane containing these two vectors is of
" fundamental importance. He calls it the directrix, and uses for it
the symbol D. Thus Da.B corresponds geometrically to Hamilton’s
Vof. It will be noticed that O’Brien keeps quite distinct the con-
ception of the product a.B3, and that of its directrix Da.8. From
the definitions it follows that a.a is zero, so that a x a may be written
o? without any fear of ambiguity. Then «® is assumed to be the
square of the length of a. It is abundantly evident that O’Brien’s
vector in multiplication is not intended to have any versor charac-
teristic. He sees that the square of every unit vector must be the
same, and confessedly assumes it to be + 1, pointing out, however,
that if he could see any reason for making it — 1, his system would
be the same as Hamilton’s. 'We shall return to this further on.

Meanwhile, take another of the arguments accumulated by Pro-
fessor Gibbs in favour of the non-quaternionic basis of vector
analysis. He writes :—

¢ How much more deeply rooted in the nature of things are the
functions Saf and Vaf than any which depend on the definition of
a quaternion will appear in a strong light if we try to extend our
formulae to space of four or more dimensions. It will not be claimed
that the notions of quaternions will apply to such a space, .
But vectors exist in such a space, and there must be a vector
analysis for such a space. The notions of geometrical addition and
the scalar product are evidently applicable to such a space. As we
cannot define the direction of a vector in space of four or mere
dimensions by the condition of perpendicularity to two given vectors,



70

the definition of Vaf, as given above, will not apply totidem verbis
to space of four or more dimensions. But a little change in the
definition, which would make no essential difference in three dimen-
sions, would enable us to apply the idea at once to space of any
number of dimensions.”

To elucidate the “ nature of things” by an appeal to the fourth
dimension—to solve the Irish Question by a discussion of social life
in Mars—it is a grand conception, worthy of the scorner of the
trivial and artificial quaternion of three dimensions. But is it not’
the glory of quaternions that it is so pre-eminently a tri-dimensional
calculus? Geometers who look forward to a four dimensional exist-
ence may think their time in three dimensions best employed by
confining their attention only to such mathematical methods as seem
to be applicable to the higher space. But he lives best who works
best in the particular environment of the moment. The man who
fasts a whole week in prospect of a feast of unique magnificence is
hardly rational. And note that Professor Gibbs has to make
¢ a little change in the definition” of Vaf, ere he can make it ser-
viceable in his evanescing vision of four dimensional space. Even
his own vector analysis does not apply at once ; and, with the ad-
mission of the necessity of change, the argument loses all point.

¢ There must be a vector analysis in such a space ”—true, and
there must be in space of n dimensions an M-in-one corresponding
to the 4-in-one in 3-dimensional space. Moreover, the geometrical
significance of a quaternion, as the factor that changes one vector
into another, must have its analogue in space of four or higher
dimensions. For if there be vectors, there must be modes of changing
one into another.

In further pursuit of his end, Professor Gibbs draws a compari-
son between the quaternion and the linear and vector function,
which latter he regards as quite enough for all purposes. He asserts
that “nothing is more simple than the definition of a linear vector
function, while the definition of a quaternion is far from simple.”
Observe, it is the simplicity of the definition that is here spoken of ;
but a definition will appear simple or the reverse, according to the
degree of previous knowledge possessed. I question very much that
a vector function of a vector is an easy conception to make on the
part of one who is just entering upon the study of a vector analysis.
It is only by a study of its properties, geometrical and dynamical,
that the linear vector function becomes intelligible. Not until the
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thing symbolised is got & hold of by the mind can the definition of
the symbol convey any adequate meaning. But, on the other hand,
if the conception of a vector be realised at all, the further conception
of the geometric meaning of the quotient and product of two vectors
is a very simple step indeed. A simpler can hardly be imagined.

‘When Professor Gibbs speaks of the definition of a quaternion
being far from simple, he probably has in mind the truth that a
quaternion is expressible as the sum of a scalar and a vector. Mr
Heaviside says: ¢ The quaternion is regarded as a complex of scalar
and vector.” The pure analyst may think of it so ; but the physicist
should think of it in its purely geometrical significance as made up
of tensor and versor. Its property of being decomposable into
scalar and vector parts with geometric meanings, at first sight so dis-
tinct from its own fundamental characteristic, is an absolutely invalu-
able one. The quaternion includes within itself the conception of
a rotation, a stretching, a vector area, and a projection. You may
choose whichever part or parts may serve your purpose for the
moment—they are all there uniquely determined when the quater-
nion is given. There truly is a king of quantities. “Upon earth
there is not his like.”

Still another argument, advanced in all seriousness by both
Gibbs and Heaviside, is that even the avowed quaternionist com-
paratively rarely uses the quaternion, but is constantly manipulating
his scalar and vector products. Now, it is true that the symbols 8
and V throng the pages of Hamilton and Tait ; but the expression
Vaf does not hide the truth that o is a quaternion. It rather
displays it. By way of illustration, let us apply the Gibbs-Heaviside
argument to trigonometry. In any treatment of this subject, the
quantities sinf and cos@ occur a hundred times at least for once
that 0 occurs singly. Is the angle, then, of no fundamental import-
ance in trigonometry ? There is more than an apparent analogy
here. For just as sin and cos are selective symbols operating on 6,
so are V and § selective symbols operating on g.

I1. ComMPARISON OF NOTATIONS.

- Professor Gibbs, having to his own satisfaction got rid of the
“ trivial and artificial ” quaternion, is, for consistency’s sake, obliged
to object to the selective system of notation. This is not, however,
the ostensible ground on which he recommends the adoption of a
notation in which vector and scalar products of .two vectors are
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indicated by symbols inserted between the quantities. This he
regards as the natural mode of representation. Consequently he
suggests a x B to represent what he calls the “skew” product, and
a.8 to represent what he calls the ‘“direct” product.* The skew
product is Hamilton’s vector product, which is certainly an infinitely
more suitable name, even from Gibb’s own limited point of view.
The “direct” product—a most inappropriate name, it seems to me
—1is the product of the lengths of the vectors into the cosine of the
angle between them, and corresponds to Hamilton’s —Sef8. It is
obvious that, though there may be a saving of labour in writing a.8
instead of Saf, no such advantage attaches to a x 8 as compared
with VafB. But it is when more than two vectors have to be joined
together that the inferiority of the suggested notation becomes
painfully evident. Thus the expression SafBy must be written
- a.f3 x y, which is less compact and less symmetrical than Hamilton’s
form. Again, the expression VVaBVyS must be written (ax )
x (y x 8), where the brackets are all-essential. The quantity VaSy
cannot be expressed by Gibbs at all in simple form, but has to be
given in the expanded form

—afBxy+ax(Bxy).
Such an expression as Va.8Vyd can only be displayed in the
extraordinary form

—afByx8+ax(Bx(yx8s)).

It is occasionally necessary to use brackets in somewhat com-
plex quaternion formulae, although in general a separating “dot”
suffices to prevent ambiguity. But, in Gibbs’s system, brackets
have to be introduced just as soon as we begin to pass to the
simplest formulae involving three vectors. The cross and dot are,
in short, quite unequal to the task of distinguishing vector and
scalar quantities.

Heaviside, in his notation, retains Hamilton’s V, but drops the
S, so that where no initial V exists, the product is taken to be the
scalar product. Thus he would write SaBy in the form — aV Sy, in
which, it appears to me, the symmetry of the expression is, to a
large extent, lost, and in which there is no gain in compactness.
The possibility of cyclically permuting oy without altering the
value of Safy is by no means so evident in Heaviside’s form.

* These are O’Brien’s very symbols, but used with the meanings interchanged.
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One of the peculiar merits of Hamilton’s notation is the way in
which vector quantities stand out in relief among quantities of a
different character. Small Greek letters are in general used for
vectors ; small Roman letters for scalars. The selective symbols
V, S8, T, U, K are evident at a glance, and we know what a quan-
tity is before we have to inquire narrowly into its constitution.
Not so with Gibbs’s notation, in which any really complex expres-
sion becomes bewildering in its dots, crosses, and brackets. Heavi-
side has to a large extent destroyed the perspicuity of Hamilton’s
notation by employing capitals for the frequently occurring single
quantities, so that the very important symbol V is not conspicuous.
He distinguishes vectors from scalars by using heavy type. This
distinguishes them sufficiently, no doubt, in print; but vector
analysis is a thing fo be used, and it is hopeless to write,.easily and
rapidly, capital letters and thick-lined capital letters with pencil,
pen, or chalk. His own suggestion of a suffix notation to be used
in manuscript is an unconscious condemnation of his whole system.
A good notation in vector analysis requires these three things: (1)
rapidity and ease in writing the frequently recurring quantities ;
(2) a distinction, evident at a glance, between vectors and scalars ;
and (3), as important as any, the vector and scalar parts of products
thrown out in clear relief. It is abundantly evident that, in these
respects, Hamilton’s notation easily holds its own.

Apart altogether from the comparison that has just been made,
there is, I think, a fundamental objection to a notation like O’Brien’s
and Gibbs’s. It is that, corresponding to either product, there is no
process by which a generalised quotient can be formed by taking one
of the members over to the other side of the equation. Thus the
equation axfB=y
suggests by its very form that there ought to be a transformation
like a=y+f.

But there is no such, for obvious geometrical reasons. In other
words, given y and f3, a is not determined. This simply shows, of
course, that a x 8 has no claim whatever to being regarded as a
complete or generalised product. Exactly the same is true of a.f3.
Now in quaternions we have af8=g, where any one is determined
uniquely when the other two are given. We are able at once to
write a=¢gf? or B=0a""q. But in the equations

VaB =y and SefS=a
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there is no suggestion of the possibility of taking 8 or a to the other
side as a kind of divisor. By the very law of their being, 8 and V
are selective symbols, and (like sin, cos, log, etc.) operate on the
whole quantity 8. But in Gibbs’s notation we have two quantities
having all the appearance of ordinary products, to which, however,
the familiar transformations which are suggested by their form are
inapplicable. Such a restriction is surely inexpedient, especially
when the desired end can be attained by a less objectionable and
infinitely more perspicuous notation such as Hamilton has provided.

II1I. TaE VERSORIAL CHARACTER OF VECTORS.

The identification of quadrantal quaternions and vectors has
already been described as constituting one of the most important
simplifications effected in the calculus. If a quadrantal quaternion
operate fwice on the same vector perpendicular to its axis, it will
turn that vector through fwo right angles, and change the length of
the vector in the ratio of a® to 1, where a is the tensor or stretching
part of the quaternion. In symbols, if « is the quadrantal quater-
nion or wvector, and B the perpendicular vector acted on, we get

a3 = —-a’P,

because the direction of B is simply inverted; or o= -’ In
words, the square of a vector is equal to minus the square of its
length. If 4, j, & are unit vectors, then *=7*=/4*= —1. This
negative sign, which O’Brien puzzled over long ago, is a stumbling-
block and rock of offence to both Mr Heaviside and Dr Macfarlane.
It reappears whenever the quantity Saf is transformed into its
value in ordinary algebraic quantities. Heaviside apparently was
the first to kick against this peculiarity of quaternions. In his
earlier papers he used the symbolism of quaternions because of its
expressive compactness ; and having found it irksome to be con-
tinually changing signs of scalar products, when he had occasion to
transform these into ordinary algebraic symbols, he determined to
take the scalar product as plus the product of the tensors into the
cosine of the angle between the vectors. This O’Brien touch seems
80 far to have led to no confusion. Heaviside’s formulae are quasi-
quaternionic, and are a considerable simplification on the correspond-
ing Cartesian expressions. But as the change involves the very
fundamental one of making 4, /% 4% each plus unity, it is certain
that the system is not quaternions. What, then, is it? To what,
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if fully developed, would it lead us? Macfarlane completely
answers this question. In his pamphlet, The Algebra of Physics, he
works out very fully O’'Brien’s and Heaviside’s vector analysis, and
obtains a system very similar up to a certain point to Hamilton’s
quaternions, but departing widely therefrom in certain of its higher
developments. It is much more complicated, YET X0 MORE GENERAL.
When Dr Heaviside has realised the complication which is the
logical outcome of his imagined simplification, we trust he will re-
turn into the paths of quaternionic rectitude. In his recent paper
on the Forces, Stresses, and Fluxes in the Electromagnetic Field
(Phil. Trans. 1892), he writes that his system ¢is simply the ele-
ments of quaternions without the quaternions, with the notation
simplified to the uttermost, and with the very inconvenient minus
sign before scalar products done away with.” As we shall see
presently, the first nine words of this sentence are fundamentally
inconsistent with the last twelve.

Let us consider, first, what is common to quaternions, and to
the system advocated by Heaviside and Macfarlane. It is well
known that quaternions may be built up analytically upon the pro-
perties of 1, j, %, three unit vectors (or right versors), at right angles
to one another. Now Heaviside and Macfarlane admit the relations

G=k= —fi, jk=i= - kj, ki=j= — ik,

which also hold in quaternions. Gibbs, it may be noted, does not
use the complete product at all, but writes his relations thus :

ixj=k=—jx1,etc,; .i=1, etc.

O’Brien and his unconscious followers, however, boldly put
#=7=/*= +1, thereby clashing at once with quaternions.

Taking, then, what is common to the two, namely, the set of
equations represented by 4 =% = —ji, let us consider the product of
the three vectors, 1, ¢ +j, j, the values of 4% /° 4* being meanwhile
left undetermined.

Then by one mode of association,
g =i +7) = ke = =
and by another mode of association,

G =+ G = + = -
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Here the distributive law is assumed. Now if these quantities
are to be the same, that is, if the associative law is also to hold, we
must have P=F= -1

If we use +1, we get opposite vectors, and the associative law
does not hold in vector products. The above, of course, is a very
simple case. In the completely general case in this rival system,
the products (af8)y and a(By) are different quantities, giving the same
scalar part, but quite different vector parts. It is surprising that
this aspect of the question should have escaped O’Brien.

Let us represent vectors in Heaviside’s and Macfarlane’s system
by Roman letters abed ..., and corresponding Hamiltonian vectors
by afy8 .... Then it is easy to see that, since the scalar part of the
product ab is equal to — Saf,

ab= —SaB+Vaf = -Kaf3= - fa,
and it may be shown that

(ab)e= —yof
a(bc) = — Bya.

Now in quaternions we get in general siz different quantities by
permutations of a, B, y; and at first sight it might seem that this
new vector algebra gives twelve different products, since each ar-
rangement such as abc gives two products by different associations.
But inquiry soon shows that this is not so ; for although there are
two quantities got by different associations of any given arrange-
ment, each quantity so obtained is reproduced in a particular asso-
ciation of some other particular arrangement. We easily see, in
fact that afy= —(bc)a= — c(ab)

yaB = - (ab)c= —b(ca),

and so on. It isevident that the O’Brien system gives us absolutely
nothing more than is given by quaternions, but simply adds com-
plexity. In quaternions we get all possible products by permuta-
tion only ; in this other system we get the same number of quantities,
partly by association, partly by permutation. The complexities of
the system are still more pronounced when we pass to products of
four or more vectors. Macfarlane glories in his five products
obtained by different associations, namely,

((@b)e)d, (a(be))d, (ab)(cd), a((be)d), a(b(cd)).
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But then we find that each one of these is reproduced in four
other associations of particular arrangements. For example,

(ab)(ed) = ((add)b)o = (d(ba))e = b((de)a) = b(c(ad)).

All this hopeless confusion is the result of putting 4, 5% &® each
equal to unity. Well may we be grateful to Hamilton for having
given us an associative vector algebra of the utmost generality. A
most interesting discussion of this very point is given in §§ 50-56 of
the Preface to Hamilton’s Lectures on Quaternions. It is there
shown, from general considerations of the symmetry of space, that,
when the rules for the multiplication of vectors are made to differ
as little as possible from the usual rules for the multiplication of
numbers in algebra, the result is the quaternion system of vector
analysis, the commutative law only being departed from. These
sections should be carefully considered by all would-be innovators.

The question naturally arises—What meaning are we to
attach to the equations 3 =4%, jk=17, etc? Heaviside and Macfar-
lane seem to regard ¢ and j as mutually perpendicular vectors,
which, by their product, give a third vector perpendicular to both.*
In quaternions the meaning is obvious, for ¢ is the versor which,
acting on 7, turns it into . Moreover, Professor Gibbs, on page 6
of his pamphlet, explicitly enunciates the same principle when he
says that « the effect of the skew [i.e., vector] multiplication by a
[any unit vector] upon vectors in a plane perpendicular to a is
simply to rotate them all 90° in that plane.” To which, by way of
commentary, we may quote the following from Heaviside :

“In a given equation” [in quaternions, that is], “one vector
may be a vector, and another a quaternion. Or the same vector, in
one and the same equation, may be a vector in one place and a
quaternion (versor or turner) in another. This amalgamation of the
vectorial and quaternionic functions is very puzzling. You never
know how things may turn out.”

Puzzling —then should Mr Heaviside find his own system as
puzzling as any. For when he writes the vector product

ﬁ=h
he is simply acting on j by ¢, or on ¢ by j, and turning it through a

* O’Brien seems to be much more consistent here, for his product a.8 is the
area, and he uses Da.S as the symbolism for the quantity Vag. Where Heaviside
and Macfarlane cease to be O’Brienites, they hecome inconsistent.
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right angle. It is impossible to get rid of this versorial effect of a
vector. It stares you in the face from the very beginning. It is
the only rational way of impressing the meaning of the equations.

Leaving Gibbs and Heaviside to harmonise, if possible, their
differences, I shall here call attention briefly to one distinction
between Hamilton’s quaternions and Grassmann’s 4dusdehnungslehre.
In the Ausdehnungslehre of 1862, Grassmann explains the meaning
of his units e, ¢, ¢, . . . The essential feature of these is, that
e, = —ee, 66;= — e, and so on for any pairs. Since the units
are supposed to be of the same kind, it follows that e,e, = — ¢,e, also,
an equation which cannot be true unless ¢, vanishes. Similarly the
squares of all the units vanish. Grassmann also suggests that an-
other algebra is given if we assume ¢? ¢’ ¢? . . . to beeach
equal to + 1, and all the products to be zero.

It is evident that the whole mode of looking at the question is
fundamentally different in the two cases; and that it is impossible
to identify Grassmann’s units with Hamilton’s ¢, j, £ Grassmann’s
“outer” and ‘“inner” products in the Ausdehnungslehre of 1844
correspond to Hamilton’s Va8 and - Sof; but there is no doubt
that Grassmann failed to see that these quantities could be combined
by subtraction, so as to give a new quantity having a very simple
geometrical meaning, namely the quaternion of Hamilton.

IV. GENERAL CONCLUSIONS.

The general conclusions at which we have arrived may be sum-
marised briefly as follows :

(1) The quaternion quotient is as fundamental a geometrical
conception as the vector sum, the vector product, and the scalar
product of two vectors, so that Professor Gibbs’s argument, which
is based upon the assertion that it is certainly not so, is void and
meaningless.

(2) Whatever demerits may exist in Hamilton’s own notation,
there has not as yet been suggested anything that can be regarded
as an improvement. The changes introduced by Gibbs and Heavi-
side destroy some of the most perspicuous and symmetrical features
of the quaternion notation. Leaving out of account a few very
exceptional cases, these suggested notations cannot for a moment
compare with Hamilton’s in clearness, compactness, and facility for
manipulation,
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(3) In the original conception of a vector (as involved in the
addition theorem, for example), there is nothing inconsistent with
its versorial character in multiplication. The truth is, that many
physical quantities, which are symbolised by vectors, are essentially
rotational. It is not merely displacement, or velocity, or accelera-
tion that is so symbolised. Moments of velocities and forces, rota-
tions themselves, vortex axes, and a whole host of similar quantities
in electricity and magnetism, are either simple vectors or localised
vectors. Or again, it is universally admitted that a displacement
may be regarded as a rotation about an infinitely distant axis.
Every vector in space may be regarded as a vector arc upon a
spherical surface of infinite radius. But a vector arc on a spherical
surface is a versor. On what physical ground, then, can any one
object to a vector having a versorial quality? Indeed, notwith-
standing all assertions to the contrary, Heaviside and Macfarlane
really use the vector as a versorial operator ; for what other mean-
ing can be attached to the equation 4 =%? Gibbs, as we said,
explicitly uses the vector as a versor. The versorial character of a
vector being thus admitted, there is no sufficient reason for regard-
ing the square of a vector as other than minus the square of its
length,

(4) The vector algebra, which is built upon the assumption that
#=7=k*= 41 is non-associative in its products. And yet, notwith-
standing this appearance of greater generality, it gives us absolutely
no new thing. Its non-associative character is partly balanced by
the fact that its non-commutativeness is incomplete. It simply
muddles what is beautifully clear in quaternions.

In this paper I have limited myself to the consideration of the
fundamental differences that exist between quaternions and the
systems advocated by Gibbs, Heaviside, and Macfarlane. To com-
plete the discussion, however, it would be necessary to review the
systems in themselves as they have been developed. Of the three,
Professor Gibbs has given us the most consistent system in his
pamphlet, The Elements of Vector Analysis. In a paper communi-
cated to the Royal Society of Edinburgh, I have entered at some
length into a criticism of the contents of this pamphlet.

I show that Professor Gibbs, although ostensibly excluding the
quaternion, introduces it in a covert way in his treatment of the
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linear and vector function. Not only so, but in certain volume
surface and line integrals he uses the quaternion product itself,
thereby perjuring his whole position, as described in his letter to
Nature. Then there is his treatment of the quantities and opera-
tions that cluster round the quaternion operator t7. By their
tinkering processes, Gibbs, Heaviside, and Macfarlane all reduce
this beautiful operator to a mere make-believe, which, in the simpler
applications, appears to have all the essential attributes of the true
7, but utterly fails when higher things are demanded of it.

Tt is a fair question—What has induced these scientific writers
to take up their antagonistic attitude to the quaternion calculus?
Heaviside and Macfarlane confess that their grievance is the minus
sign. It is marvellous—indeed, almost ludicrous—to have mathe-
maticians take fright at such a very simple matter. To the be-
ginner, perhaps, who is constantly translating the quaternion
quantities into ordinary analytical form, the necessity of changing
the sign before scalar quantities is at first a little irksome. But,
with a very little experience, the irksomeness quite vanishes away.
It is no more formidable than re-arranging the terms of an equation
by shifting them to different sides. Possibly, however, this preli-
minary peculiarity may have deterred many from continuing their
study of quaternions. Hecaviside, with inimitable assurance, thinks
his system is what the physicist wants. An algebra non-associative
in its products! When once the physicist has realised the full
meaning of this, he will surely take courage, and tackle the
quaternion analysis in earnest.

Gibbs, however, although he uses a symbolism for — SaS, and
thereby appears to side with Heaviside, nowhere confesses to have
been repulsed by the * unnatural ” and “inconvenient” minus sign.
‘Why, then, does he object to Hamilton’s system ? His ostensible
reasons, as given in the first letter to Nature, have been shown to
be based on a complete misapprehension. Evidently he has not
taken the trouble to get into the spirit of quaternions—and this, I
believe, to be the true explanation of the apathy amongst physicists
towards quaternion analysis—or (if we may judge from his second
letter to Nature) he has so convinced himself as to the all-efficiency
of Grassmann’s methods, that he is determined to bar out the great
thing in Hamilton’s system which is lacking in Grassmann’s. With
what success, or non-success rather, he manages this, is shown in my
paper communicated to the Royal Society of Edinlurgh.
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On some Lioci connected with Conics.
By A. J. PressLAND, M.A.

1. For a proof of the following theorem due to Frégier, see
Salmon’s Conic Sections, p. 175, or Gergonne’s Annales, VI. 231
(1816).

“If two straight lines at right angles be drawn through any
point on & conic, the line joining their other points of section will
pass through a fixed point on the normal.”

If the conic be #*/a® +4?/6°=1 ... A,

and the point be acosf, bsind then the lines x =acosf, y = bsind will
be a pair of lines through the point at right angles. The chord
joining their other points of section is

x/acosl + y/bsind =0,

which intersects the normal in the point

x= %acose y= - bsind),
the locus of which is
P (a,’ _ ba)z B
?‘FF— m vee “ee ves .
If we take this conic as the origina.], the corresponding locus is
WY ) C
+35 775 . .
Now the polar of acosf, bsinf with respect to B is
a:coso ysm0 - b’)
a a+0]’

which is a tangent to C.

‘We could in this manner obtain an infinite series of concentric
similar and similarly placed ellipses, such that of any three consecu-
tive ones the external one would be the polar reciprocal of the
internal one with respect to the middle one.

. It can be shown that this is true of concentric similar and
similarly situated ellipses whose major axes are in Geometrical

Progression.
The same theorem holds for the Hyperbola.
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If the parabola y*=4ax be taken, the lines x =am?, y =2am will
be a pair of lines at right angles through the point am? 2am. The
line joining their other points of section is y = — Zam, which intersects
the normal in the point 4a + am?, — 2am, the locus of which is

y*=4a(z - 4a),

a parabola having the same latus rectum and axis as the original one.
If we find the corresponding locus for this parabola we obtain

= 4a(x - 8a).
Now the polar of (am? 2am) with respect to y*=4a(x — 4a) is
my =z — 8a + am’?,
which is a tangent to y* = 4a(x - 8a).

It can be shown that this theorem is true of a series of parabolas
having the same latus rectum and axis and similarly placed, pro-
vided that their vertices are distributed at equal intervals along the
axis,

One example of the last series is found as an answer to the
following question :—

If parallel chords of a parabola be drawn, the locus of the point
of intersection of the tangents at their extremities is a straight line,
and the locus of the point of intersection of the normals at their
extremities another straight line. To find the locus of the point of
intersection of these two lines.

If y=2am be the diameter on which the tangents intersect the
normals will intersect on the normal at 4am? - 4am, which is

- 8am(x — 4am®) + 4a(y + 4am) =0,
and the locus reduces to y*=4a(z - 3a).

This can be shown geometrically to be the locus of the point of
intersection of normals at right angles.

2. If from a point A4, % three normals be drawn to the parabola
y*=4ax the equation m®-m(h-2a)/a—kla=0 determines their
intersection with the curve.

If tangents be drawn at these points the orthocentre of the
triangle so formed is

= @, a{my +my +my + mymyms},
or -a &k
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That is the intersection of the diameter through 4, & with the
directrix determines the orthocentre.

3. In the central conic it is geometrically proved that (Fig. 26)
PG.PF=BC? Pg.PF=AC?.
Now from the circles NGFK and ngFk

LFGK = L FNK = 2 FznP, since P, N, C, F, #n are concyclic.
= L Fgk.

Hence GK is parallel to gk and the circles FGNK, gFnk touch
at F.

If CL be perpendicular to TPz the points C, », L, P, N, F are
concyclic, and the centre of the corresponding circle is the mid point
of CP.

If this point be O, then . OFP= L OPF= L CNF.

Therefore OF touches the circle NGFK, and therefore nFgk.

As On=0F=O0N, On and ON are also tangents. But NOn is
a straight line. Therefore 2ON is the other common tangent to the
two circles.

These two circles are therefore cut by CzxLPNF orthogonally.

This theorem is quite independent of the ellipse except for the
direction of TPz. If this be taken at pleasure, the theorem still holds,
and from it a2 number of geometrical derivatives can be obtained.

(i) The circle about F, N, K passes through G. This can be
extended to similar circles derivable from the cyclic hexagon
CnLPNF whose opposite sides are parallel. Thus the point of in-
tersection of Pn and CL is on the circle n¢L.

(ii.) Six circles of the series FGNK are obtainable, each of
which touches the two adjacent ones.

(iii.) Two sets of three circles corresponding to knFg are obtain-
able. The circles of each set touch each other and four circles of
group (ii.).

(iv.) O is the radical centre of all these circles.

Taking the pair of circles FGNK, Fgkn we shall get another
circle, the image of PNC in their axis, and on it a point P’ the

image of P.
If now CB, CA and P be fixed, the locus of F will be a circle

on CP as diameter, and the locus of P’ a cardioid .with P as pole,



84

Fourth Meeting, February 10, 1893.

JoHnN ALisoN, Esq., M.A,, F.R.SE., President, in the Chair.

Note on Attraction.
By Professor Tarr.

It is well known (see Thomson and Tait, § 517, 518) that a
spherical shell, whose surface-density is inversely as the cube of the
distance from an external point, as well as a solid sphere whose
density is inversely as the fifth power of the distance from an
external point, are centrobaric. The centre of gravity is, in each
case, the ¢ image” of the external point.

To show that these express the same physical truth, we may of
course recur to the method of electric images from which they were
derived. But we may even more easily prove it by a direct process,
for it is obviously only necessary to show that a thin shell, both of
whose surfaces give the same image of an external point, has every-
where its thickness proportional to the square of the distance from
that point.

Call O the object, and I the image, point; and draw any
radius-vector IPQ, meeting the respective surfaces of the shell
in P and Q. Then, ultimately,

0Q — OP =QPcosOPI,
or, in the usual notation,

) (L) = 8rcosOPI,
e

whence (introducing the new factor r)
Se r
4% =8r( L - reosOPT) = 8r0LeosIOP.

But IOP is equal to the angle between IP and the normal at P,
50 that the thickness of the shell at P is

rde

SrcosIOP = 70 |
08 OLé
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Notes: (1) On a Geometrical Problem.

(2) On an Algebraical Hquation of Professor
Cayley’s.

By Professor STEGGALL.

On the Fundamental Principles of Quaternions and other
Vector Analyses.

By Dr WiLLiaM PEDDIE.

‘When a student of mathematics commences the study of a sub-
ject which involves the assimilation of what are, to him, fundamen-
tally new ideas, his progress is, as a rule, slow at first. And, even
after he has become accustomed to these ideas, he may still require
a long course of laborious practice, before he can attain to that
mastery of the method which would enable him to use it as a powerful
aid to research. Thus students, familiar with geometrical methods,
when first commencing the study of Cartesian analysis, require much
practice before they can call up mentally the geometrical figure
corresponding to a given equation, And, the more general the new
method is, the greater is the difficulty felt to be. 8o, in Hamilton’s
system of quaternions, the difficulty of assimilation is greater than
it is in the Cartesian analysis. And it seems as if it were for this
reason that, in recent years, attempts have been made, by men of
known mathematical ability, to smooth the paths.

Practically, all these attempts consist in using, instead of
Hamilton’s, another system of quaternions, cut up into parts; the
parts of that system being used because they are imagined to be
superior to the corresponding parts of Hamilton’s system in respect
of naturalness. Subsequently, I shall say somewhat regarding the
reasonableness (or unreasonableness) of this claim; but, whatever
conclusion be accepted on this point, M‘Auley’s appeal to the
spoon-feeders, to “provide spoon-meat of the same kind as the
other physicians ” (Nature, Dec. 15, 1892), is most appropriate.

Some of the strictures recently passed on quaternions refer
rather to the way in which the subject is presented in the standard
treatises than to quaternions themselves. Heaviside (Electrician,
Nov. 18, 1892) refers to three special *sticking-points” in Tait’s
treatise. One of these is the investigation of Hamilton’s cubic
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in Chap. V. There is no special difficulty in the investigation,
though the process may have been difficult enough to discover;
and, curiously enough, when one turns with great expectations
to Heaviside’s alternative process, it is with genuine disappoint-
ment that it is found to be, stepfor-step, Hamilton’s with ¢'Vmn
written instead of VAp, and with other corresponding surface
changes.

Another special “sticking-point” is said to be in Chap. IV.,
“where the reader may be puzzled to find out why the usual
simple notion of differentials is departed from, although the de-
parture is said to be obligatory.” Surely the fact that, in this
chapter, the usual notion is freely used, should produce reflection
rather than misconception.

Chief of all the “sticking-points” is ¢ the fundamental Chap. IL.,
wherein the rules for the multiplication of vectors are made to
depend upon the difficult mathematics of spherical conics, combined
with versors, quaternions, and metapbysics.” It is somewhat
puzzling to find Heaviside speaking of the mathematics of spherical
conics—at least so far as they are used there—as difficult. The
“metaphysics” evidently refers to Hamilton’s speculation, which
Tait takes care to call a quasi-metaphysical speculation. His
conclusions are the necessary logical results of his postulates, which,
in so far as they refer to the nature of space, express the results of
experience, and cannot be called metaphysical. One of the chief merits
of this chapter, from a student’s point of view, lies in the wealth of
alternative proofs which it contains. Doubtless, by assuming the
fundamental rules of vector multiplication, the identification of
unit vectors and quadrantal versors might have been more directly
made. But it seems as if Heaviside had failed to notice that Tait’s
method shows that such sweeping assumptions are unnecessary—
that partial assumption of certain of the rules only is needed.

Another bone of contention is the minus sign which appears
in the square of a vector or in a scalar product. Gibbs says (Nature, .
April 2, 1891), “When we come to functions having an analogy to
multiplication, the product of the length of two vectors and the
cosine of the angle which they include, from any point of view
except that of the quaternionist, seems more simple than the same
quantity taken negatively.” Macfarlane (Proc. Amer. Ass., 1891)
says, that “a student of physics finds a difficulty in the principle
of quaternions which makes the square of a vector negative”; and
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Heaviside (Electrician, Dec. 9, 1892) writes, that *“the vector
having to submit to the quaternion, leads to the extraordinary
result that the square of every vector is a negative scalar. This
is merely because it is true for quadrantal versors, and the vector
has to follow suit. The reciprocal of a vector, too, goes the wrong
way, merely to accomodate versors and quaternions.”

- Now this point raises the whole question of the value of
quaternions as such. Given that the quaternion is useless, or
nearly so, in itself; and that scalar and vector products are only
of use separately; no one will quarrel greatly with the advocates
of the positive sign. Heaviside remarks that the physicist *is very
much concerned with vectors, but not at all, or at any rate scarcely
at all, with quaternions”; that *“if the usual investigations of
physical mathematics involved quaternions, tken the physicist
wounld no doubt have to use them. But they do not. If you
translate physical investigations into vectorial language, you do
not get quaternions; you get vector algebra instead.” Gibbs
remarks, that ¢ the question arises whether the quaternionic product
can claim a prominent and fundamental place in the system of
vector analysis. It certainly does not hold any such place among
the fundamental geometrical conceptions as the geometrical sum,
the scalar product, or the vector product. The geometrical sum
a+ 3 represents the third side of a triangle as determined by the
sides @ and B. Vaf represents in magnitude the area of the
parallelogram determined by the sides a and B, and, in direction,
the normal to the plane of the parallelogram. SyVaf represents
the volume of the parallelopiped, determined by the edges a, 8, and .
These conceptions are the very foundations of geometry.” “Ido nog
know of anything which can be urged in favour of the quaternionic
product of two vectors as a fundamental notion in vector analysis,
which does not appear trivial or artificial in comparison with the
above considerations. The same is true of the quaternionic quotient,
and of the quaternion in general.”

‘Whatever be the case with regard to the mathematician, the
statement that the physicist is scarcely, if at all, concerned with
quaternions has surely been made without sufficient reflection.
‘We may observe the velocities of a planet at two distinct instants,
and merely describe the facts: or we may ask Aow the one became
the other. The answer may be given in two ways—either by stating
what vector quantity added fo the one gives the other, or by
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stating what quantity acting upon the one gives the other. The
former corresponds to the methods of pure vector analysis; the
latter to those of quaternions, involving turning and lengthening.
Both methods are of importance to the physicist. He sometimes
wishes to consider the external addition to the changing quantity ;
sometimes to consider the internal changes as such. And one might
just as rationally assert that he has to do only with quaternions
as that he has to do only with vectors, since it is easy to use a
notation expressing a vector in terms of a quaternion. The so-called
vector analyst really uses a notation which expresses a quaternion
in terms of vectors, and so his analysis simply bristles with quater-
nions: the quantity is none the less a quaternion because he chooses
to shut his eyes to the fact, or at least not to use it as such. When
he deals with VaB, the quantity af is the thing which turns the
unit vector B into the unit vector +a, or into - @, according as we
define the square of a unit vector to be equal to positive, or to
negative unity, respectively—if we operate from right to left. But
the vector analyst refuses to take advantage of what is in his
power. Surely Heaviside would not have spoken of ¢ wrong ways”
if he had observed that, while in the quaternionic system af turns
B into -a and «/B turns B into +a; in a similar system, in
which the square of a unit vector is positive unity, o would
simply do what the quaternionic «/8 does: and, if no fancied
metaphysical necessity made the analyst regard the reciprocal of
a direction as identical with the direction itself, a/8 would do
what the quaternionic af3 does. The one method is as “natural”
as the other. The choice of one must be ruled by expediency;
the test of expediency being chiefly generality and applicability.

I believe most distinctly that students will prefer quater-
nion methods to those by which it is proposed to supersede them.,
The former develope a system naturally without any assumptions
beyond those made fundamentally. In the latter, new definitions
take the place of connecting links—as in the case of a working
hypothesis which does not work well. An almost endless series
of examples might be given of the singular inapplicability of the
non-quaternionic systems to physical and other problems. Macfarlane

_is practically the only recent writer on the subject who does not
arbitrarily exclude the quaternion from his system, which differs
from ordinary quaternions in that the square of a unit vector is
- positive unity, and that he chooses to operate from left to right.
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The quaternionic aspect of his system may be seen thus. Let a be
any vector whatsoever, and let i be any unit vector. In Macfarlane’s
system aii represents a vector got by rotating a rigid-body-wise

. through two right angles round the axis of ¢: the corresponding
vector in quaternions is —dai or ta:~!. In Macfarlane’s system
—(a) [or 4'ai~Y, if he did not fancy that the direction reciprocal to
a given direction should be that direction itself] is the vector —a:
in quaternions this is aii. Certain results have been interchanged,
and that is all.

It might not have appeared a priori that this was all, for in this
system a restriction, which holds in quaternions, disappears. The
associative law does not apply, and in this respect the new algebra
might have been more general ; for, as Kelland points out in the
Preface to Kelland and Tait’s Introduction to Quaternions, generality
is attained by the removal of restrictions. In arithmetic, the
treatment of fractions was impossible until multiplication ceased
to be regarded as a series of additions; and algebra became possible
when negative quantities were recognised. But, in algebra, the
commutative law holds. Quaternions—the self-contained algebraic
system most suitable to tri-dimensional space—became possible
when it was denied. But, in quaternions, the associative law
holds. It may be that, in some system free from this restriction,
greater generality will be reached. But the essential identity,
pair by pair, of the results of the two systems under consideration,
precludes the idea in this case. And so, the new system being no
more general than quaternions, and being distinctly less workable
(for no one will maintain that a non-associative algebra is so work-
able as an associative algebra), expediency decides in favour of
quaternions.

Macfarlane asks, “ What reason do writers on quaternions give
for taking axx’+yy'+ 22’ negatively in the case of the product of
two vectors?” and asserts that ‘“the true reason for taking the
expression negatively is to satisfy the rule of association.” This
is not so : for it is easy to prove that we may take the square of a
unit vector as positive unity, and yet get the associative law;
provided only that we take i = J—_lk, etc., where 4, j, and %, are
unit rectangular vectors, and ij or ,/— 1k is the quadrantal versor
whose axis is . But, in this case, the product of an even number
of vectors is a linear function of . the three unit rectangular versors,



90

while the product of an odd number is linear in ¢, j, &. Thus odd
and even products are fundamentally distinct, and simplicity is lost.

Another point, in regard to which quaternions have been
attacked, is that of applicability to space of n-dimensions. Hyde
(Directional Calculus, Preface), speaking of Grassmann’s method,
says, “It seems scarcely possible that any method can be devised,
comparable with this, for investigating x-dimensional space;” and
Macfarlane asserts that ¢the method of Hamilton appears to be
restricted to space of three dimensions.” Gibbs speaks more
strongly. ‘““As a contribution to analysis in general, I suppose
that there is no question that Grassmann’s system is of indefinitely
greater extension [than Hamilton’s] having no limitation to any
particular number of dimensions” (Nature, May 28, 1891). “How
much more deeply noted in the nature of things are the functions
Saf and Vaf than any which depend on the definition of a quater-
nion, will appear in a strong light if we try to extend our formule
to space of four or more dimensions. It will not be claimed that
the notions of quaternions will apply to such a space, except,
indeed, in such a limited and artificial manner as to rob them of
their value as a system of geometrical algebra. But vectors exist
in such a space, and there must be a vector analysis for such a
space. The notions of geometrical addition and the scalar product
are evidently applicable in such a space. As we cannot define the
direction of a vector, in space of four or more dimensions, by the
condition of perpendicularity to two given vectors, the definition
of Vap, as given above, will not apply totidem verbis to space of
four or more dimensions. But a little change in the definition,
which would make no essential difference in three dimensions, would
enable us to apply the idea at once to space of any number of
dimensions ” (Nature, April 2, 1891).

Fortunately, the *“strong light” of which Gibbs speaks shines
the other way. The notions of quaternions are applicable to space
of four or any number of dimensions. The general system should
give a definition of Vaf, perfectly definite in space of any dimen-
sions, and reducing to the usual one when the dimensions are limited
to three. And it does.

The problem is to find a general system involving quantities
DAY A A , Which represent unit rectangular vectors in cyclical
order, and obey the laws ¢’ =j'=......= - 1; ¢j= —ji, ...... ; and
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also the associative law. And the system must reduce to quater-
nions when only three of these vectors exist.

This problem has been worked out by Clifford in a paper On the
Classification of Geometric Algebras. He makes the above assump-
tions, and then seeks to find what assumption must be made
analogous to the Hamilton law k= - 1. The following method
of .procedure is perhaps more in accordance with Hamiltonian ideas.

In three dimensions, the product of two unit rectangular vectors
is the remaining rectangular unit vector. Assume generally that
the product of % — 1 such units, in cyclical order, is a vector quantity
representable by the remaining rectangular vector ; so that

where —y, is the operator which transforms = into 4%......m, and
we get

ijk...... n=y,;
and, if we put ¥,¢, =y, Y, =1, we get
1=y, "k...... n.

Also ny, =nyk.....n= +3k...... m, according as % is even or odd ;
that i, ny, = + ¢y, maccording as n isodd oreven. And n= +y,ny,™
according as n is odd or even. In this way we see that, quite
generally, ¥, and ¢, are symbols commutative with vectors if n
is odd, but non-commutative if = is even.

‘Whatever be the sign of ¢,% the sign of ¢,,,> must be similar
or dissimilar according as % is odd or even: for ¢,,,* is reduced to
+¢,} by n interchanges of the vector (»+1) with other vectors,
together with the substitution of -1 for (n+1)’. It follows that,
in the case of even values alone, y* is positive and negative unity
alternately ; and the same rule holds in the case of odd values alone.
In the special case of three dimensions, y?= —1, from which all
other cases may be deduced.

In an odd space of n-dimensions, we may put

n+1
¢n =0 ?’
where o is a quantity whose square is negative unity. And, in an
even space of n-dimensions, we may put

' ¢"=w€,
where o? is also negative unity.
Except in the cases in which n is divisible by 4, we may
suppose w to be the imaginary of ordinary algebra; in these cases
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¥ would be positive or negative unity, so that the more general
symbol should be retained because of the non-commutative nature
of ¢ in spaces of even dimensions.

In particular, in two dimensions, %j= ,\/—_1 Hence we get
j=-iJ-1= /-1i,and = - J=1j. TIf a=ai+yj, the operator
J—1(=y,) gives ./— la=zj—yi. In this case there is no need to
retain the symbols i, j; for a=xi+yj=(x+y ./— 1)i, and i denotes
a given direction, so that a may be completely denoted by z+y ./ = L.
It appears, therefore, that complex algebra is a special case of this
generalised quaternionic system. Ordinary arithmetic may be re-
garded as the special case ¥, = 1.

Thus, in respect of generality, as well as of simplicity, the
quaternionic method has the advantage.

In four dimensions, from #kl=y, we get yk= — i, jkl=yx1,
kli= —yj, lij=yk. Tt does not follow that the space is non-
symmetrical, or that, as the condition of symmetry, we should
have ijk= —yl, jkl= —yi, etc. For we have seen that, in the
symmetrical two-dimensional space, we have i = — -1 i= 14
not j= — ,/— 14, as a necessary condition for symmetry.

In any space Vaf represents a directed area in the plane of «, 8.

In three dimensions, it happens to be representable by a linear
vector.

Fifth Meeting, March 10, 1893,

JonN ALsoN, Esq., M.A., F.R.8.E,, President, in the Chair.

Early History of the Symmedian Point.
By J. 8. Macray, M.A,, LL.D.

In 1873, at the Lyons meeting of the French Association for the
Advancement of the Sciences, Monsieur Emile Lemoine called
attention to a particular point within a plane triangle which he
called the centre of antiparallel medians. Since that time the
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properties of this remarkable point and of the lines and circles con-
nected with it have been investigated by various writers, foremost
among whom is Monsieur Lemoine himself. The results obtained
by them are so numerous (indeed every month adds to their number)
and so widely scattered through the mathematical periodicals of the
world that it would be a task of considerable magnitude to make
even an undigested collection of them. It is the purpose of the
present paper to state those properties of the point which had been
discovered previously to 1873. A short sketch of some of them will
be found at the end of a memoir read by Monsieur Lemoine at the
Grenoble meeting (1885) of the French Association, and in a memoir
by Monsieur Emile Vigarié at the Paris meeting (1889) of the same
Association. The references given by Dr Emmerich in his Die
Brocardschen Gebilde (1891) are very valuable. It is a pity they
are not more explicit.

If ABC be a triangle, AA’ the median from A, then AR the
image of AA’in the bisector of angle A is called the symmedian
from A. It is not difficult to prove that AA’ bisects all parallels to
BC, and that AR bisects all antiparallels to BC. Hence Monsieur
Lemoine proposed* to call AR an antiparallel median. This name
however has been replaced by symmedian (symédiane abbreviated
from syméirique de la médiane) a happy coinaget of Monsieur
Maurice d’Ocagne.

Since the three medians and the three symmedians are isogonally
conjugate with respect to the three angles of the triangle, those
theorems which have been established regarding isogonally conjugate
lines in general can at once be applied to the particular case of
medians and symmedians.

The point of concurrency of the three symmedians, which it is
usual to denote by K, has received various names such as minimum-
point,{ Grebe’s point,§ Lemoine’s point.|| The designation sym-
median point, suggested 9 by Mr Tucker, seems preferable to all of
these.

* Nouvelles Annales de Mathématiques, 2nd series, XII. 364 (1873).

+ Nouvelles Annales de Mathématiques, 3rd series, I, 451 (1883).

1 Dr E. W. Grebe in Grunert’s Arckiv der Mathematik, IX. 251 (1847).
§ Dr A. Emmerich’s Die Brocardschen Gebilde, p. 37 (1891).

II Prof. J. Neuberg’s Mémoire sur le Tétraédre, p. 3 (1884).

9 Educational Times, XXX VII. 211 (1884).
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The first mention of the symmedian point that I have found
is in Leybourn’s Mathematical Repository, old series, IIL. 71, where
the following question is proposed* for demonstration by ¢ Yanto.”

If K be the point in a triangle from which perpendiculars are
drawn to the sides of the triangle so that the sum of their squares is
the least possible ; twice the area of the triangle 18 a mean propor-
tional between the sum of the squares of the sides of the triangle and
the sum of the squares of the above-mentioned perpendiculars.

The second mention of K is in Leybourn’s Mathematical Re-
pository, new series, Vol. I. Part I. pp. 26-7. :

Question 12, proposed by James Cunliffe, Bolton, is:

It s required to determine the locus of a point, from whence,
if perpendiculars be drawn to three straight lines given by position,
the sum of the squares of the said perpendiculars may be equal to a
given magnitude.

In the solution of this question—the locus is an ellipse—given
by Mr J. L. it is shown that if K be taken such that KL, KM, KN
(perpendicular to BC, CA, AB) are proportional to BC, CA, AB,
then KL+ KM2?+KN? is a minimum, and that AK produced
divides BC into segments which are proportional to AB? and AC~

Seeing that solutions of the first 30 questions proposed in the
Mathematical Repository were to be in the hands of the editor by
the first day of February 1804, it may be assumed that Mr J. I’s
solution was published in that year. I have some grounds (which
need not be stated here) for conjecturing that Mr J. I. was James
Ivory, known for his theorem regarding the attractions of ellipsoids
on external and internal particles.

Ivory’s theorem that the distances of K from the sides are
directly proportional to the sides taken along with the well-known
theorem that the distances of the centroid G from the sides are
inversely proportional to the sides, establishes the theorem that
G and K are inverse points with respect to the triangle.

In Leybourn’s AMlathematical Repository, new series, Vol. I.
Part IL. p. 19 (1806), Ivory proves the theorem :

If P and @ be two points taken on a pair of lines isogonal with

* T am not quite certain at what date, for my copy of Vol. III. is imperfect.
But at p. 80 a letter is printed, dated March 1st, 1802, and at p. 83 another dated
Sept. 8, 1802. It may therefore be presumed that the question was published
in 1803.
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respect to angle BAC, the distances of P from AB and AC are
inversely proportional to those of Q from AB and AC.

The converse of this theorem, taken with what immediately
precedes, might easily suggest that the lines drawn from A to G
and K (hitherto known only by its minimum property) were
isogonal with respect to angle BAC; but Ivory makes no explicit
mention of the fact.

The other theorem given by Ivory, namely, that AK produced
divides BC into segments, which are proportional to AB? and AC?
is easily seen to be a particular case of a theorem regarding isogonals
which was known to the ancient Greeks.* The theorem is:

If ABC be a triangle, and if AP, AQ be isogonal with respect
to A, and meet BC in P and Q, then

BP'BQ:CQCP=AB*: AC.
It may be worth mentioning that Pappus proves also that if

BP'BQ:CQCP > AB*: AC?
then angle BAP > angle CAQ.

Lhuilier in his Elémens & Analyse, pp. 296-8 (1809), states and
proves the theorem of “ Yanto,” shows that the distances of any
point in a symmedian from the adjacent sides are proportional to
those sides, that the segments into which a symmedian divides the
opposite side are proportional to the squares of the adjacent sides,
and adds:

¢ This doctrine can be extended to any polygons and even to
polyhedrons. I shall content myself, for example, with determining
that point in space from which, if perpendiculars be let fall on the
faces of a tetrahedron, the sum of their squares is a minimum, and
with determining that minimum.”

He then proves that

(1) The perpendiculars drawn from this minimum-point are-
directly proportional to the faces on which they fall.

(2) The perpendicular on any face is a fourth proportional to the
sum of the squares of the four faces, to the square of this face, and
to the altitude of the tetrahedron which corresponds to this face.

(8) Thrice the volume of a tetrahedron is a mean proportional

* See Pappus’s Mathematical Collection, VI.,12. The same theorem differently
stated is more than once proved in Book VII, among the lemmas which Pappus
gives for Apollonius’s treatise on Determinate Section.
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between the sum of the squares of the four faces and the sum of the
squares of the perpendiculars let fall on them from the minimum
point.

In this connection reference may be made to Professor J.
Neuberg’s Mémoire sur le Tétraédre (1884).

The fourth discoverer of the point K is L. C. Schulz von
Strasznicki. C. F. A. Jacobi says that Schulz published a pamphlet
in 1827 with the title ¢ Das gradlinige Dreieck und die dreiseitige
Pyramide nach allen Analogien dargestellt.” This pamphlet I have
not seen. About the same time Schulz published in Baumgaertner
and D’Ettingshausen’s Zeitschrift fiir Physik und Mathematik, 1.
396, II. 530, two articles, the first on the plane triangle and the
second on the tetrahedron. Probably these two articles and the
pamphlet are the same thing. In the first article he proves the
following results : * :

(1) If K (defined by its minimum property) be joined to the
vertices, the fundamental triangle will be divided into three other
triangles whose areas will be as the squares of the sides of the
fundamental triangle on which they rest.

(2) The straight lines drawn through each vertex and through
K will divide the opposite sides into two segments proportional to
the squares of the adjacent sides; hence a simple geometrical
construction for finding K.

(8) The same straight lines will divide each of the angles of the
triangle into two partial angles whose sines will be as the adjacent
sides.

(4) If the point K is replaced by the centroid G, the sines of the
partial angles will be as the reciprocals of the adjacent sides.

(5) If the point K is replaced by the circumcentre O, the cosines
of the partial angles will be directly as the adjacent sides.

(6) If the point K is replaced by the orthocentre H, the cosines
of the partial angles will be inversely as the adjacent sides.

(7) Generally, if the angles of a triangle be divided in such a
manner that for each of them the sines of the partial angles may be
to each other directly or inversely as any powers or functions of the

* This account of Schulz’s articles is taken from Férussac’s Bulletin des Sciences
Mathématiques, VIII, 2 (1827).
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adjacent sides the three straight lines will be concurrent; and if
each side be divided into segments which are to each other as
functions of the adjacent sides, and each point of section be joined
to the opposite vertex, the three straight lines will be concurrent.

Steiner in a paper published* in Gergonne’s Annales de
Mathématiques XIX. 37-64 (1828) states and proves some of the
fundamental theorems relating to isogonally conjugate points and
lines. Thus ’

(1) The orthogonal projections on the sides of a triangle of two
isogonally conjugate points furnish six concyclic points.

(2) If P, Q be isogonally conjugate points with respect to ABC,
the sides of the pedal triangle corresponding to P are perpendicular
to QA, @B, QC; and the sides of the pedal triangle corresponding
to Q are perpendicular to PA, PB, PC.

(8) If three lines drawn from the vertices of a triangle be con-
current, their isogonal conjugates with respect to the angles of the
triangle are also concurrent.

(4) Every point in the interior of a triangle may be considered
as one of the foci of an ellipse inscribed in the triangle.

(5) The feet of the perpendiculars let fall from the foci of an
ellipse on its tangents are all situated on the same circle having the
major axis of this ellipse for diameter.

(6) If an angle be circumscribed to an ellipse the straight lines
drawn from the two foci to the vertex of that angle are isogonal
with respect to it.

(7) The rectangle under the perpendiculars let fall from the two
foci of an ellipse on any one of its tangents is constant and conse-
quently equal to the square of the semiaxis minor of the ellipse.

In C. Adams’s Die Lehre von den Transversalen, pp. 79-80 (1843)
the following theorem is proved :

Let D, E, F be the points of contact of the incircle with the sides
of ABC, and T be the point at which AD, BE, CF are concurrent.
If through T' parallels be drawn to the sides of triangle DEF, these
parallels will cut the sides of DEF in six concyclic points.t

* Republished in Steiner’s Gesammelte Werke, I. 191-210 (1881).
+ See the following paper on Adams’s Hexagons and Circles.
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It is now known that I is the symmedian point of DEF ; hence
this six-point circle of Adams is the first Lemoine circle of DEF,
or as Mr Tucker has called it, the triplicate-ratio circle.

Adams shows also that the centre of his six-point .circle is the
mid point of I'[, where I is the incentre of ABC and consequently
the circumoentre of DEF.

It will conduce to brevity of statement if the following defini-
tions and notation be laid down.

If AR, BS, CT be the symmedians of ABC, then AR/, BS', CT’
their harmonic conjugates with respect to the sides of ABC may be
called the external symmedians,* or the exsymmedians of ABC.
The points R, R’ are situated on BC, S, 8’ on CA, T, T on AB.
Let the exsymmedians intersect each other at K,, K,, K, and let AK,

meet the circumcircle ABC whose centre is O at D. The mid point
of BCis A'.

The following properties occur in C. Adams’s Die merkwiirdig-
sten Eigenschafien des geradlinigen Dreiecks, pp. 1-5 (1846).

(1) The theorem quoted from Pappus VI, 12.

(2) The corollary BR:CR=AB?: AC%.

(3) The tangents to the circumcircle at the vertices coincide with
the exsymmedians of the triangle.

(4) The symmedian from any vertex and the exsymmedians from
the two other vertices are concurrent.

(5) DR, DR’ are the symmedian and exsymmedian of triangle
BCD drawn from D.

(6) BR, BK, are the symmedian and exsymmedian of triangle
ABD drawn from B.

Similarly for CR, CK, and triangle ACD.

(7) AR”+BK*=K,R%

(8) OR is perpendicular to K,R".

(9) AR’ is a mean proportional between A'R"and RR'.

In this connection it may be worth mentioning that Pappus in

his Mathematical Collection, VIIL., 119, gives the following theorem
as a lemma for one of the propositions in Apollonius’s Loci Plani :

* Monsieur Clément Thiry in Le T'roisiéme Livre de Géoméirie, p. 42 (1887).
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It AB*: AC*=BR':CR'
then BR"CR'=AR"

Dr E. W. Grebe of Cassel in Grunert’s Archiv der Mathematik,
IX, 250-9 (1847) discusses the point K and gives it the name
minimum-point. He indicates two constructions for finding K.

(1) On the sides of ABC let squares X, Y, Z be described
either all outwardly to the triangle or all inwardly. Produce the
sides of the squares Y, Z opposite to AC, AB to meet in A'; the
sides of the squares Z, X opposite to BA, BC to meet in B’; the
sides of the squares X, Y opposite to CB, CA to meet in ¢'. Then
A’A, B'B, C'C will be concurrent at K which will be the minimum-
point not only of ABO but of A'B'C'.

(2) Find the isogonally conjugate point to G the centroid.

Denote by L, M, N the projections of K on BC, CA, AB.

(3) Various expressions for KL?+ KM?+ KN2

(4) Expressions for the segments BL, CL, CM, AM, AN, BN
in terms of the sides @, b, ¢, and in terms of the sides and angles.

(5) Expressions for AK, BK, OK in terms of the sides, and in
terms of the sides and the three medians.

(6) Expressions for MN, NL, LM in terms of the sides and area
of ABC, and in terms of the sides, area, and medians of ABC.

(7) K is the centroid of LMN.

Grebe shows that if the square on the side AB be described
inwardly to the triangle and the other two squares outwardly, an
analogous point, K, is obtained, and he gives three sets of expres-
sions for its distances from BC, CA, AB.

The next mention of K is in the Nouvelles Annales, 1st series,
VIL 407-9 and 454 (1848). The theorem is thus stated :

If through each angle of a triangle a straight line is drawn which
cuts the opposite sides into two segments proportional to the squares of
the adjacent sides the three straight lines are comcurrent at @ point
such that the sum of the squares of its distances from the sides of the
triangle 18 a minimum.

The theorem was communicated by Captain Hossard to M.
Poudra who gave a geometrical solution in the course of which it is
seen that the perpendiculars from K on the sides are proportional
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to those sides and that K is the centroid of the triangle LMN. At
the end of Captain Hossard’s analytical solution it is added that the
square of the distance AK is
b%*(b® + ¢* + 2bc cosA)
(a*+ 6%+ ¢%)?
an expression almost identical with that given by Grebe.

C.F. A. Jacobi in his Die Entfernungsirter geradliniger Dreiecke,
pp. 12-13 (1851) draws attention to isogonal points (Gegenpunkte he
calls them), and proves that if K be the point isogonal to G then K
is the centroid of the triangle whose vertices are the projections of
K on the sides of ABC, and the sum of the squares of the distances
of K from the sides of ABC is a minimum. He adds that a Viennese
mathematician L. C. Schulz von Strasznicki gave another proof by the
help of co-ordinate geometry and the differential calculus.

Monsieur Catalan in Lafremoire’s Théorémes et Problémes de
Géométrie Elémentaire, 2nd ed., p. 161 (1852) proves that if K be the
minimum point of ABC it is the centroid of the triangle LMN.

In Schlomilch’s Uebungsbuch zum Studium der hiheren Analysis,
I. § 33 (1860) there is enunciated the theorem

The three straight lines uhich join the mid points of the sides of a
triangle to the mid points of the perpendiculars on them from the
vertices are concurrent.

Dr Emmerich says that the identity of this point of concurrency
with the symmedian point was made evident by Wetzig.

Dr Franz Wetzig in Crelle’s Journal LXII. 349-361 (1863) gives
five or six properties of the symmedian point, but adds nothing to
what had previously been known. The symmedians he calls
minimum-axes, and remarks that they are analogous to the medians.
He returns however to the subject four years later.

In Mathematical Questions from the Educational Times, III.
30-1 (1865) Mr W. J. Miller points out that the straight lines
joining the three excentres I,, I,, I, of a triangle to the mid points
of the sides are concurrent at & point such that the sum of the
squares of the perpendiculars drawn therefrom on the sides of the
triangle I,LI; is a minimum, and these perpendiculars are, moreover,
proportional to the sides on which they fall. -
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In the Lady’s and Gentleman’s Diary for 1865, pp. 89-90, Mr
Stephen Watson proposes two questions for solution. The first is:

Show that three rectangles can be inscribed in any triangle, so
that they may severally have a side coincident in direction with the
respective sides of the triangle, and their diagonals all intersecting in
the same point. Also show that one circle will circumscribe a'l the three
rectangles, and find its radius.

The common centre of these three rectangles is the symmedian
point, and the circle circumscribing them is Lemoine’s second circle.

The radius of the circle, given in Mr Watson’s solution published

the year following, is equal to
abc

The second is:

Through each two of the angles of a triangle ABC any circles are
deseribed cutling the sides again in D, E ; F, G; H, I; and at each
of those pairs of points tangents are drawn to the circles, meeting in
P, Q,R. Show that the loci of P, @, R are conics passing respectively
through the angles of the triangle, and intersecting the two contiguous
sides, in each case, in two points D', E'; F, @ ; H',I'. Also show
that the tangents to those conics at the angles, and the lines D'E', F'G',
H'T all pass through one point.

This point is the symmedian point, and is identified by Mr
Watson with the centre of the three rectangles in the previous
question.

In the Nouvelles Annales de Mathématiques, 2nd series, IV. 403-4
(1865) Monsieur J. J. A. Mathieu mentions as inverse points with
respect to triangle ABC the centroid G and the point of inter-
section of AK,, BK,, CK; This point of intersection, he states,
has for polar the straight line which passes through the points of
intersection of each side with the tangent to the circumcircle drawn
through the opposite vertex.

Let I, I,, I, I, be the incentre and excentres of ABC,
T, I, T, T’y the Gergonne points,
and ", Ty, T, Ty the points complementary to T, etc. ;

‘then T, I,rY, I,ry, I,ry
are concurrent at G the centroid of ABC,
and - I, LY, LY, LTy

are concurrent at K the symmedian point of ABC.
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The preceding theorem was enunciated by Mr William Godward
in the Lady’s and Gentleman’s Diary for 1866, p. 72, and a solution
by trilinear coordinates appeared in the same periodical the following
year. In connection with this subject it may be worth while to
compare Lady’s and Gentleman's Diary for 1865, pp. 63-5, and
-Mathematical Questions from the Educational Times, II. 86-8 (1865).

In the Diary for 1867, p. 71, Mr Thomas Milbourn enunciates
the theorem,

If 3 be the diameter of the circle remarked by Mr Stephen
‘Watson, that is, the second Lemoine circle, and d the diameter of
the circumcircle, then

1,1 _1 1. 1
FreaTr e
In Schlémileh’s Zeitschrift fiir Mathematik, X1I. 281-301 (1867)

Dr Wetzig communicates a considerable number of properties relating

not only to K but to K;, K,, K; which he calls harmonically associated

(harmonisch zugeordneten) to K with respect to ABC. Thus

(1) If XYZ be the orthic triangle of ABQ its sides are parallel to
those of K, K,K;.

(2) AK,, BK,, CK; meet at K and bisect the sides of XYZ.

(3) K is the centre of a conic which touches the sides of ABC
at X, Y, Z.

(4) On the medians of ABC are situated the symmedian points
of the triangles AYZ, BZX, CXY.

(5) AK,, BK, CK, meet BC, CA, AB, at R, S, T. Perpendiculars
RR/, 88, TT' to BC, CA, AB divide the sides of XYZ in the
same proportions as the sides of ABC.

(6) A, K, R, K, is a harmonic range.

(7) XR' goes through K.

(8) The symmedian point of AYZ is situated on the perpendicular
from K to BC.

(9) KYZ:KZX:KXY=KBC:KCA:KAB

= BC?: CA!: AB:

(10) In the point systems A, B, C, ..., X, Y, Z, ..

K corresponds to itself and the circumcentre of the first
system corresponds to the orthocentre in the second.
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(11) The points K, K, K, of the first system lie with the corres-
ponding points of the second on the perpendicular bisectors
of BC, CA, AB and are equally distant from BC, CA, AB.

qually

(12) K,A : K,A=CX:BX, etc.

(13) K,K; KK, 'K K, : BC ‘CA ‘AB =2 circle K,K,K;: circle ABC

(14) AA"BB'-CC' :AK;BK,CK;=R:4 radius of circle K,K,K,

=AK'BK -CK : KK;KK,KK,

(15) a'AK :0'BK :c:CK=AA’: BB': CC'

AK BK CK,; _ad*+b'+¢*
16 ] 122 2 __ 02 3

16) o'zx =¥ &% =% %, )

KK KK KK
17 LI 2 S=a:0%:¢?

(17) AK, BK, CK,

(18) Then follow expressions for the distances from BC, CA, AB
of K, K,, K,, K,.

If 2, 3, 2, 2, denote the sum of the squares of these respective
distances

1 1,1, 1
TTRIRTY
(19) If &/, %", k" denote the distances of K, from BC, CA, AB
kl'kl”kl'” : k2 ’ kﬂn kg’” . k3’k3” ka”’ — a3 : bs : c’.
(20) K is the centroid of triangle LMN, and the sides of LMN are
proportional to the medians of ABC.

(21) MN is perpendicular to AA’, and the angles of LMN are equal
to the angles which the corresponding medians make with
one another.

(22) If %, %, %, denote the distances of K from BC, CA, AB
3LMN : ABC=/?+ k2 + k2:a® + 0% +¢*
(23) Corresponding property for triangle L,M,N,

JLMN _LMN, . _ A

24 -
(24) > 3, a?+ 0%+

A construction for determining K is given in Schémilch’s
Zeitschrift, XVI. 168 (1871) from a communication by Const.
Harkema in Petersburg.
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The Elements of Quaternions (First Paper).
By Dr WiLLiaM PEDDIE.

In this paper the laws of addition and subtraction of vectors
were considered, and examples of their extreme usefulness in geo-
metrical applications were given.

Adams’s Hexagons and Circles.
By J. 8. Mackay, M. A., LL.D.

Fiaure 24.

In triangle ABC, AD, BE, CF are concurrent at O; through
O parallels are drawn to EF, FD, DE, meeting the sides of ABC
inL, M, P,Q, S, T, and the sides of DEFin L', M, P, Q, &, T'.
The two hexagons LMPQST, L'M'P'Q'S'T" thus formed have the
following properties :

(1) The sides L'M’, P'Q, S'T' of the latter are parallel to the
sides of ABC.

The complete quadrilateral AFOEBC has its diagonal AO cut
harmonically by EF and BC;
therefore A, U, O, D is a harmonic range,
and E-A U O D is a harmonic pencil.

Now OP'EQ’ is a parallelogram ; o
therefore P'Q’ is bisected by EO;
therefore P'Q’ is parallel to that ray of the harmonic pencil which
is conjugate to EO, namely EA.
In like manner S'T" is parallel to AB, and L'M' to BC.

(2) The sides QS, TL, MP of the former are parallel to the
sides of DEF.
Since PEQ'P' and QEP'Q’ are parallelograms,

therefore PE=QE.
Similarly TF=S8F;
therefore PE:QE=TF:SF.
Now PT is parallel to EF;
therefore QS is parallel to EF.

In like manner TL is parallel to FD, and MP to DE.
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(8) The two hexagons are similar, and the first is four times the
second.

This follows from the fact that the hexagons are made up of
similar and similarly situated triangles, the ratio of whose homo-
logous sides is that of 2: 1.

(4) If D, E, F be the points of contact of the incircle with BC,
CA, AB, the two hexagons obtained as before are inscriptible in
. circles; the radius of the greater circle is double the radius of the
less; the centre of the greater circle is the centre of the incircle ;
and if I" be the point of concurrency of AD, BE, CF the centre of
the less circle is the mid point of I'T.

Ficure 25
Angle ML'Q'=CDE=CED=EPQ’;
therefore L', M, P, Q are concyclic.
Similarly P, Q, §, T are concyclic,
and S, T, L', M’ are concyclic;

hence, by a theorem of Poncelet’s, all the six points are concyclic.*

That the six points, L, M, P, Q, 8, T are concyclic, follows from
the preceding.

Since LM, PQ, ST, are chords of the greater circle, and they
are bisected at D, E, F, therefore the centre of the greater circle
is found by drawing perpendiculars to BC, CA, AB at D, E, F.
But these perpendiculars are concurrent at the incentre.

Since I' is the centre of similitude of the two hexagons, it is the
external centre of similitude of the two circles circumscribed about
them ; and since I is the centre of the greater circle, the centre of
the smaller circle must lie on I'l.  But because the radius of the
greater circle is double the radius of the less, the centre of the less
circle must be at I' such that

Ir':1Tr=2:1.

The preceding properties have been taken from C. Adams’s
Die Lehre von den Transversalen, pp. 77-80 (1843). The following
considerations may be added :

(5) If, instead of the points of contact of the incircle D, E, F,
there be taken the points of contact of the excircles D,, E,, F,, or
D,, E; F,, or D;, E;, F; analogous properties will be obtained.

Hence the existence of three other pairs of circles,

* Adams’s proof of this is somewhat diﬁe::ant.
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(6) It is known that I'is the symmedian point of the triangle
DEF; hence the circle 'M'P'Q'S'T’ is the triplicate-ratio, or first
Lemoine, circle of DEF. :

T is frequently called the Gergonne point of triangle ABC. -

(7) If the points of concurrency of the triads

AD,, BE, CF, T,
AD,, BE, CF, } be { T,
AD, BE, CF, T,
then T, T, T, are the symmedian

points of the triangles D,E,F,, D,E,F, D,E;F;;
and three of the circles referred to in (5) will be Lemoine circles of
these triangles.

Ty, T, T'; are frequently called the adjoint Gergonne points of
triangle ABC.

(8) Let the tangents to the circumcircle ABC at the points
A, B, C meet each other at K, K;, K,; then, if triangle ABC be
acute-angled, the circle ABC will be the incircle of triangle K, K,K;,
and if triangle ABO be obtuse-angled, the circle ABC will be an
excircle of triangle K;K,K;. Hence the relation in which triangle
ABC stands to K,K,K; will, if ABC be acute-angled, be that in
which triangle DEF stands to ABC, and so on. The two systems
of points therefore

D,EFIT, A, B C,...
A,B,C 0, K, K, K, K.
correspond.

(9) As the straight lines through I parallel to the sides of DEF
cut the sides of ABC in six concyclic points, so the straight lines
through K parallel to the sides of ABC will cut the sides of K,K,K;
in six concyclic points. Hence the existence of another circle
connected with the triangle. .

Since I, the circumcentre of DEF, is the centre of the
circle LMPQST, therefore O, the circumcentre of ABC, will be the
centre of this new circle.

(10) If in the second system of points referred to in (8) those
points be taken which correspond to I',I',I'; in the first system,
three other sets of six concyclic points will be obtained.
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Stath Meeting, April 14, 1893.

JonxN AvrisoN, Esq., M.A., F.R.S.E,, President, in the Chair.

Action at a distance, and the transmission of stress by
isotropic elastic solid media.

By C. CHREE, M.A.

INTRODUCTION.

§ 1. The mutual action of two electrified bodies was regarded by
Maxwell as transmitted by a medium. According to him the stress
in the medium* consists of a ¢ tension like a rope ” along the lines
_of electrical force whose intensity per unit of area is R*/8«, where R is
‘the resultant electric intensity, and of a pressure numerically equal
to this in all orthogonal directions. Maxwell’s remarks are some-
what vague but his notation is strongly suggestive of an elastic solid
medium. It has, however, been pointed out by Minchint that
Maxwell’s stress system would not in an ordinary elastic solid give
.origin to strains consistent with the *‘ equations of compatibility ”
which the theory of elastic solids supplies. Considerable interest
still attaches to the theory of an elastic solid medium propagating
stresses equivalent to the action between distant bodies of forces
varying inversely as the square of the distance. For in the first
place, it has been pointed out that the stress system given by Max-
well does not constitute a unique solution} of his equations; and, in
the second place, it has been suggested that some medium must
exist for the transmission of gravitational forces. The statical
problem of the propagation of gravitational forces by an isotropic
elastic medium has been treated by Minchin.§ His treatment how-

* Electricity and Magnetism, 3rd edition, Art. 106.
+ Treatise on Statics, vol. IL., 3rd edition, pp. 451-3.

1 Minchin Le., or Maxwell’s Electricity and Magnetism, 3rd edition, Art. 110
footnote. - .

§ Minchin Lc., pp. 454-8.
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ever neglects a certain surface condition. I have thus thought it
worth while to consider the problem independently, employing the
ordinary surface conditions. The first part of the paper is devoted
more especially to the electrostatic problem, but the elastic solid
problem is essentially the same throughout.

§ 2. The ordinary “action at a distance” theory regards a charge
of electricity as a very thin superficial layer which repels a charge
of the same sign and attracts one of opposite sign with a force
varying inversely as the square of the distance. In interpreting this
as an elastic solid problem the most obvious plan is to regard the
layer as a thin shell of elastic material containing and surrounded
by other elastic material, the layer being the only material exercis-
ing what we may term “ gravitational forces”. Supposing initially
there are no gravitational forces and no strains anywhere in the
medium, the endowment of the layer with the gravitational forces
gives origin to a system of stresses required to keep the medium in
equilibrium. These stresses reversed in sign would be those which
a theory such as Maxwell’s would substitute for the action at a dis-
tance of the thin layer. 1In the electrostatic problem the layer
must be supposed extremely thin while at the same time the surface
density is finite. In order to avoid the risk of unduly limiting the
problem the layer is regarded here as of a different elastic material
from that either inside or outside it. It is assumed, however, that
the material of the layer is not wholly incompressible but satisfies
the ordinary elastic solid equations, and that its elastic constants
are neither infinitely great nor infinitely small compared to those of
an adjacent medium. The assumption is also made that all the
media are isotropic.

§ 3. In all the cases treated here the applied forces, and so the
strains and stresses, are functions only of the distance » from a fixed
point. The displacement % at every point is along the radius vector,
and the dilatation A is given by

du , 2u
A=""427 . .
s . (1)

In an isotropic medium whose density is p and elastic constants
m, n, in the notation of Thomson and Tait’s Natural Philosophy, the
bodily equations of equilibrium reduce in such a case to the one
equation



(m+n)—r+P_= vee e eee (2):

where V, supposed a function of r only, is the potential of the
bodily forces.

In the most general case considered here V is of the type

Vr2+V'[r,
where V and V' are constants, and the complete solution of (2) is
A=A-_P (VP4 V'
pry n( + V') (3),

where A is an arbitrary constant.
Substituting for A in (1) we deduce as the complete value of «

u=§Ar+Br"-—m_Pﬁ{éVr’+§V’} o e (4),

where B is a second arbitrary constant.

The stress system consists of a principal stress along » and two
other principal stresses perpendicular to ». The latter two are equal
and may be supposed to act along any two mutually orthogonal
directions in the plane perpendicular to . Employing the notation
introduced by Professor Pearson,* we shall denote the stress along
the radius by 7r, and employ 60 for the stress in any perpendicular
direction, or what we may call the transverse stress.

The relations between the stresses and strains are

—~ du
=(m-n)A+2n—,
rr=(m-n)A+2n 7

_ w (5).
06 =(m-n)A+ 2n;

The ordinary three surface conditions satisfied by the stresses
reduce to one, viz:

7r=radial surface force per unit of surface (6).

If the surface be “free”, or acted on by no forces, then 77 must

vanish over it. At a common surface of two media 7r must be
continuous. This condition appears to be considered unnecessary by
Prof. Minchin. In place of it he omits what is equivalent to the con-
stant A in (4), on the ground that the corresponding term contributes

* Todhunter and Pearson’s *‘ History of Elasticity ”, Vol. L, p. 321,
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nothing to the “gravitative action” on the element of the medium
(l.c, p. 454). A further obvious condition at a common surface of
two media is the continuity of the displacements, in this case of the
radial displacement.

§4. When we attempt to picture to ourselves the state of
matters close to the interface of two different media we encounter
a difficulty which has occurred to several writers. Regarding the
media as composed of molecules, the molecules of one of the media
when close to the interface may be acted on by the molecules of the
other medium, even supposing there is no mixing of the media.
Thus it seems not unlikely there may be a narrow debateable
ground wherein the relations between stress and strain show a
gradual transition from the equations that hold inside the one
medium to those that hold inside the other. The thickness of this
transition zone must probably be a very small quantity, and in
ordinary elastic solid problems its existence or nonexistence may
be of little importance. = In such applications, however, as to a
hypothetical electrostatic medium, in which the gravitating layer
is supposed extremely thin, the possibility of such a ¢ modified
action ” ought to be present to the mind of the reader. The
modified action, if appreciable, might affect the entire nature of
the solution, so far at least as concerns the strains and stresses
in the layer itself. While such a possibility may affect our attitude
towards the solution it does not justify our dispensing with elastic
solid surface conditions while applying elastic solid internal equa-
tions. As Professor Minchin employs the same elastic constants
for space outside and inside the gravitating body there would appear
no reason for supposing any modified action in the cases he treats,
and thus his neglect of the continuity in the value of the radial
stress must have some other explanation. This neglect leads
Professor Minchin to the conclusion that “the stress of the ether
18 discontinuous at the surface of the body” (l.c., p. 455). This may
be true though it presents serious difficulties, but it does not flow
from the ordinary elastic solid theory.

§ 5. Before passing to our special problems we may employ the
fundamental equations already given to show, in an elementary
way, that Maxwell’s stresses can not exist in any ordinary isotropic
elastic medium.



111

The electrostatic force R in the air outside a spherical surface,
over which a charge Q is uniformly distributed, is given by R =Q/r?,
and so Maxwell’s radial stress would be Q?/(8ar%). But supposing
no bodily forces to act we find from (3), (4), and (5),

7= (m - }n)A — 4nr—B.

If the medium extend to infinity A vanishes, but in any case
the term involving the negative power of » depends on = and not
on r—* ags Maxwell’s theory requires.

ELECTROSTATIC MEDIUM, SINGLE LAYER.

§ 6. Our first problem deals with three isotropic media, the
surfaces separating which are concentric spheres. The inmost
material is a core of radius ¢ whose elastic constants are m, n;
while the outmost material extends from r=c to r=ow and has
elastic constants m,, n,, Between these is a layer of material whose
elastic constants are m,, n, and density p, the particles of which repel
one another with a force varying inversely as the square of the
distance. The media are supposed in an unstrained state before
the gravitational force commences to aot, and our object is to find
the strains and stresses in the state of final equilibrium under the
action of the gravitational forces.

No bodily forces exist except in the layer where they answer to
a potential

V =3wp(r*+2¢7Y) ... e e ).

" The expressions for the dilatation and displacement may be
derived from (3) and (4). Thus, employing A, A, B, B, as
arbitrary constants, we have

in the core AA
u=4rA } @)
in the layer
A= -3 P (P 420
1 % m +n, - » ) (9)
2 ]
w=—-3r L _(r+&)+irA, +r 7B, f
m+n
outside the layer
A2=07 } :
wo—7-1B, (10).
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The suffixes ,, , distinguish quantities referring to the layer
and external medium respectively from those referring to the core.

The strains must not be infinite at the origin and should vanish
at infinity, so no negative powers of r are admitted in (8) and no
positive powers in (10). From (5) we find for the radial stresses
in the three media

7 =(m—n)A e (1),

—~ 2
rr=—%r ’; - {3r%(5m, + n,) + 2r~'e*(m, — my) }
my TR

+(my - In)A, - 4rn,B,, ... (12),

7ry= — 4rn,B, e (13).
The surface conditions are the continuity of the displacement
and radial stress. The equations embodying these conditions are
easily written down, and their solution may be effected without
serious difficulty on the lines adopted in treating the more com-
plicated problem of §8. It is thus sufficient to record the results

we require without giving the algebraical work. Suppose then
for shortness that

g;(sm — n+ 4n,)(3m, — my + dny)
—4(n - n){8m; —my - (Bm—-n)} =D ... (14),
and merely record the values of A and B,, viz,,

A.D =2np*(c - e)[c’e*(c + 2¢)(3my, — n, + 4n,)

+4(n, —n,)e(28 + 4’ + 6ce® + 36°)] ... (15),
B, D = 2mp¥(c — e)1c%(2¢* + 4c%e + Bce® + 3¢°)(3m — n + 4n,)
+c*(c+2¢){3m,—m - (Bm-n)}] ... (16).

§ 7. In the case which presents an analogy to the electrostatic
problem (c —¢)/e is very small. For it, retaining only lowest powers
of (c —e)/e, we find

A =6mp*(c—e)*/(3m — n + 4ny), }
B, =2mp*(c — e)’¢*/(8m — n + 4n,)
Now suppose that, however small ¢ — ¢ may be,
plc—e€)=o,
where ¢ is finite. Then putting
m-in=k .. (18),

7).
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so that £ is the dulk modulus in the core, and substituting from
(17) in (8), (10), and (5) we find

in the core
wfr =% = 970%(3k + dmy)
dr ’ (19))
7= 06 = 610%k/(3k + 4n,)
and outside the layer
Uy _ U, _ r’:, _0/\02= 21a? (e)’ 20
T e T Tin m Shdm\r (20)

The resultant per unit of surface of the radial forces exerted by
the two media on the intervening layer being F, measured inwards,
we have to the present degree of approximation, for all values of

k or ny, —_ —_
F=(rr), - (rry). =2mo? (21).*

The stresses in the medium on Maxwell’s theory ought, as
already explained, to be numerically equal but of opposite sign to
those just found. Thus the action of the elastic medium is seen by
(21) to supply the well known value for the electric force exerted on
itself by a charged surface. The real fact is that both the transverse
and radial stresses in the layer are only of the same order of magni-
tude as the stresses outside it, and so, to the present degree of
approximation, F' alone must suffice to balance the mutual repulsion
existing between the elements of the layer. Thus (21) ought to be
regarded rather as a partial verification of the accuracy of our work
than as affording any support to the theory of an elastic medium.

‘While, as we have just seen, there is a difference between the
values of the radial stresses at the fwo surfaces of the thin layer,
no discontinuity such as Professor Minchin’s treatment leads to
18 found at either surface. 'We shall not examine the stresses in the
layer at present, but shall do so in treating the gravitational pro-
blem, and shall then show how the radial stress varies in a contin-
uous way throughout the entire thickness.

It should be noticed that, to the present degree of approximation,
the strains and stresses in the core and outside the layer are inde-
pendent of the magnitude of the elastic constants in the layer,

* The suffixes ¢, ¢ outside the brackets indicate the radii of the surfaces where
the respective stresses are measured.
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provided these constants be as originally assumed, neither very
great nor very small compared to those in the other media.

The radial stress outside the layer is numerically double the
transverse stress, and not equal to it as in Maxwell’s theory. In
the core the principal stresses are all equal and their values are
everywhere the same. Not only are there in general stresses in the
core but their magnitude depends partly on the external medium.
Conversely by (20) the stresses in the external medium are partly
dependent on the elastic properties of the core. These results are
strikingly different from those observed in electrostatics, where the
electric force, and so Maxwell’s stress, vanishes inside the charged
surface, and where the force outside does not depend on the internal
dielectric. The only obvious way of getting rid of these discre-
pancies is to assume %/n, negligible.

Supposing the same media inside and outside the layer, this
would require the medium to offer very great resistance to torsion
but very small resistance to change of volume. Such properties, so
far as my knowledge goes, have never been observed in actual
experiments. The hypothesis is thus a very extreme one, but the
value it supplies for the stresses outside the layer, viz.

rry= = 2wo(efr), |

00,=  wo(e/r) | - @9

are so simple as to merit attention. These with their signs reversed
bear a certain resemblance to Maxwell’s stresses, whose values for a

. surface density o are

radial tension = transverse pressure=2wo*(e/r)* ... (23),

but the law of force is of course different.

ELEcTROSTATIC MEDIUM, Two LAYERS.

§ 8. In the electrostatic problem lines of force run from a charged
surface to an oppositely charged. Thus there may seem a radical
difference between the elastic problem last treated and that of a
charged spherical surface. A closer approach to the conditions of
the electrical problem would seem to be the elastic problem of two
thin layers with properties such as those of the single layer of our
last problem.

Let us suppose then that a spherical layer whose surfaces are of
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radii OE=¢ and OC=c¢ has a density +p,, while an outer layer-
whose surfaces are of radii OB=5 and OA=a has a density —p,,
and let the densities elsewhere be negligible. 'We shall for simplicity
suppose the elastic constants of both layers to be my, m,, while
everywhere else the elastic constants are m, n. It is assumed that
m,, n, are neither very great nor very small compared to m, n, so
that the ordinary surface conditions may apply. The medium
outside the outer layer extends to infinity. Positive matter is
supposed to repel positive and attract negative and conversely.

In the inner layer at a distance » from the centre the bodily force
is directed outwards and answers to the potential

Vi=gmp (P +27rY) .. .. (24),

whilein the outer layer the resultant outwardly directed bodily force
answers to the potential

V,=37{2p,(c* - )t + p(r* + 26°r1)} ... (25).

The solution of the bodily equations in terms of arbitrary con-
stants is as follows, quantities referring to the several media being
distinguished by suffixes,

from centre O to E

A=A,
u =3rA, e e (26),
=(m-4n)A )
from E to C
A= -3r—P (124 £ A, )
ml+
= —§1r (lr*+e3)+§rA +72B,,

> @D,

'rrl = —gr— ml { 1r¥(5my +my) + 26% Y (my — my) }
_ +(m; - §m)A, - 4—n,B, /
from C to B
A, =4, ' l
u, =krA,+7rB, e (28),
rry=(m— in)A, - 4~nB, f
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from B to A
A= —dr—C (ol + 265 7) + 2p(C - )} + A \
U= — §1r P= {p,(}r* +8) +p(c* - &)} + krAs+ 1B,
> ... (29),
TTs= = §1r P? [Pz{l’s(5m1 +n,) + 26% 7 (m, —my)}
+ 2&(@" ) (my — n)] + (my — 3my)Ag
- 4r3n,B,
outside A
A,=0,
U= r_gB” eoe oes (30).
rry= — 4B,

The continuity of the radial displacement and stress at the
common surfaces leads to the following equations :

over r=e

2
A=-272_ P 1+ +A,+3¢°B, .. (31)
Tm +nl(% e) 1+ 9e D ( )

1

(3m —n)A = - 27;:_:’___{%&(5% + 1) + 26X(m, — m)}
+(3m, — n))A,; — 12¢ °n,B e (82),

over r=c¢

Ay+3cB,= - 271 + (#c*+€%c) + A, +3¢°B, .. (38),

(8m - m) Ay~ 1207nB, = — 2L (kB + 1) + 26~ — )}

+(3m, - m)A, - 12¢~, B, . (84),
over r=150
A, + 3B, = - 21r P’ {.Dz(xl’2 +8°) +py(c* - €)o7}
+A;+30—°B;, ... (35),

(3m ) Ay = 1257*0B, = — 2r—Lo [, {}¥}(5m, + )

+ 2b%(m; — my)} + 2pl(e’ - )b~ (my - m)]
+(3m, - n))A; - 1200, B, ... .. (36),
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overr=a

8a—B,= - 21r___%i= ~ {p(3a* + Ba~) + py(c* - )2~}
+A;43°B, ... .. (87),
-12a~nB,= - 2r__F 2(6m, +n,) + 2b%a~(m, —
a—nb; 7"m] +nl[Pz{%a' (6my +m,) o~ (my — )}
+ 2p, (¢ - )a~V(m, — n,)] + (3m, — 1) A5 - 12a~°n,B; ... (88).

The above eight equations suffice to determine the eight arbitrary
constants of the solution.

From (81) and (32)

(Bm —n +4n)A = — 6mp,’e + 3(m, + m))A, - . (39),
{8m; —n, - (3m —n)}A = - Ewp’e’ + e~ (m, + n,)B, (40) ;

from (33) and (34)
(Bm —n +4m)A, + 12¢73(n, — n)B, = — 2mp,*(c* + 2¢%)c?

+3(m+m)A, . . (4D),
{8my — n) — (3m - n)} A, + 8¢—(8m, — n, + 4n)B,
=2mp}(2¢* - 5®)c 1+ 9 (my +m)B, ... (42);

from (35) and (36)
(3m —n+ 4n,)A, + 125~%(n, — n)B,
= — 2mpy{3p,* + 2py(c* - €67} + 3(my + M)A, ... (43),
{3m, —n, — (3m —n)} A, + 36=%(3m; — m, + 4n)B,
= —2mp,{3p,* + pi(c* - €07} + 967 (my + 1) By ... (44);
from (37) and (38)
12a7%(n, — n)B, = - 2mp,{ps(a® + 26%77) + 2py(c* — €°)a'}

+3(my +m)As e e (49),
3a7(3my ~ m + 4n)B, = 2mpa {1py(20° - 5b°) — pi(c* - £)}
+9a7(my+n)By .. . . (46);

from (39) and (41) eliminating A,

(3m —n+4n)(A, - A) +12¢7(n; - n)B,
= = 2mplc(c—e)’(c+2¢) ... e (47);
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from (40) and (42) eliminating B,
{3my —n, — (3m - n)} (c*A, - €*A) + 3(3m, —m, + 4n)B,
=2mwp,*(c - €)*(2c® + 4c% + bce® + 3¢°) ... e (48);
from (43) and (45) eliminating A4
(3m —n+4n,)A; +12(n; — n)(b=°B, — a—*B,)
= 2mp 0O a— bY@+ 2B) — 2pb (e — )P+ oo +eN)} ... (49);

a
‘from (44) and (46) eliminating B,

b*{3m, —n, — (3m —n)} A, + 3(3m, — n, + 4n)(B, - B,)
= 2mp,(a — b){ — 1p,(a - b)(24° + 4a% + 6ab® + 3b%)
+py(c — e)(a+b)(c* +ce +¢°) } . v . (50).

The equations (47)-(50) are true whatever be the thickness of
the layers, and the determination from them of A, A,, B,, B, presents
no difficulty apart from the length of the expressions. When these
four constants are determined the other four, A,, B, A, B;may
easily be found by means of (39), (40), (45), (46).

§ 9. For the electrostatic problem we shall confine our attention
to the case when the layers are very thin, 4,e., when (c—e)/e and
(@ —b)/a are very small. For this case putting

pic-e)=0y, pla-b)=o, (51),
we easily find from (47)-(50), retaining only lowest powers of o,
and oy,

A= m2:n (02— 200 by +o} o . (B2),
A= m2:n (02 -200y(efBf} o e e (B3),
B,=§E_7_:—“tr,’c’ OO ()8

Bf = §m: — {0 - 20100% + 0,70} ... . (55).
Substituting these values, and denoting the bulk modulus outside

the layers by & as before, we find :
from O to E

= ';707’; = §m1_:_ n{"‘ls - 2"'1"'3(0/1))2 +¢r,’} e (56),
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from C to B
=1 ’lnl’i% — 200,(c/BY} + ),
d 2,
T A2l - 20, b (oY)
= 2T (k{0 ~ 0i0,(o/8)} - dn(e/rY]
outside A
%o du, _ ;:‘ T 3( 203 _ 2 213
S it - = (0 - 200 o) . (B8).

All these expressions are independent of the elastic constants

of the material in the thin layers.
The inwardly directed resultant of the forces exerted by the
two adjacent media on the inner layer per unit of surface is to the

present degree of approximation

(7). - (773), = 2mar? e (59)
while that on the outer layer is
(;s)b - (’;'?4)« =2m{oy' - 20,05(c/b)'} . (60)-

These values supply a partial verification of the accuracy of our
work, for the transverse stress in either layer is only of the same
order of magnitude as the radial stress, and to the present degree
of approximation the resultant action of the adjacent media must
balance the gravitational force.

This is obviously true of the inner layer on which no gravita-
tional force is exerted by the other. Again, the outer layer exerts
on itself a force 2wo,? outwards per unit of surface, while the inner
layer contributes a force (4mo,c?)o,/b® inwards.

§10. In the problem analogous to the electrostatic problem,
where the charges on the two surfaces are equal and opposite, we

are to put
4rc’o, = 4wboy = (61),

so that Q answers to the charge on the positively electrified surface,
Making this substitution and using (18), we get

frmOtoE |
u _W_Q’ b c‘/(3k+4n) s oo (62))

r 8k 8m bt
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from C to B
Q1 (_r 1)
% & ran\ B o)’
"~=_Q2 1 (ﬁ 4n) 63
™S T gr SExdn\b | or)’ e (63)
5@ 1 3k 2
00,= - __— (=27
87 3k+4n\b* cr®
outside A —_
w,__rr,_ 00, Q 1 b-c

(64).

r in 2% B8x 3k+4n ber

In this case the right hand side of (60) equals — 270,'; or the
resultant of the actions of the adjacent media on the outer layer is
numerically the same as if the inner layer did not exist, but is
directed outwards.

The strains and stresses in the core will not vanish even
approximately unless either (b-c)/c be very small, t.e., the layers
very close together, or else %Z/n be negligible. While outside the
outer layer the strains and stresses will be negligible only if (b - c)/c
be very small.

In the medium between the two layers the radial stress is
always a pressure, but the transverse stress may be a pressure or
a tension according to circumstances. It will be everywhere a
tension if

n>3k(c/b) ... (65),
and everywhere a pressure if
n<3k(c/b)* ... (66).

The former case ineludes that in which &/x is negligiblee. When
this is s0 we have between the layers

—r1,=200,=Q(8rcr®) ... .. (67),
outside the outer layer
— 77y =200, = QX(b - c)/(8mber) . (68).

For the strain and stress in a medium propagating electrostatic
action the signs of all the above expressions are to be reversed.
According to Maxwell’s theory the stresses should vanish except
between the two charged surfaces, and there we should have a radial
tension Q?/(8xr‘) and an equal pressure in all orthogonal directions.
The nearest approach to coincidence with his theory is thus when
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the distance apart of the two layers is very small compared to the
radius of either surface.

For the case when the radius of the outer surface becomes
infinite, while the total distribution over it remains numerically
equal to that on the inner surface, we put (c/b) =0 in (62) and (63)
while regarding » as finite. The results so obtained agree with
those already found in (19) and (20) for a single layer when n,=1,
so0 that the existence of the layer at infinity is of no consequence.

GRAVITATIONAL MEDIUM, SINGLE LAYER.

§ 11. We now pass to the gravitational problem and consider
first a single layer of radii e, ¢, density p, and elastic constants m,, n,,
containing and surrounded by elastic media. To shorten the expres-
sions we shall suppose the external and internal media the same
and possessed of elastic constants m, n. In this case the layer being
self-attractive we must change the sign of all terms containing p? or
¢* in equations (9)—(23). Putting

§(3m —n+4n,)(8m, — n, + 4n) — 4(n;, —n){3m; —n,
-(Bm-n)}=D .. (69),
we easily find from the surface conditions

A.D = - 2mp*(c - e)’e[c*(c + 2¢)(3m, — n, + 4n)

+ &(n, — n)(26 + 4c% + 6ce® + 3¢%) ] (70),
B, D= - gmp*(c — e)’[c*(c + 2¢){8m, — n, — (3m — m)}
+ Hc/e)(2¢® + 4c% + 6ce® + 36°)(Bm — n + 4m))] ... (71),

A, D= -2mp%e~c*(c* +2¢*)(8m — n + 4n,)
Fpmmn 35(23 —n)—bm +3 )
s "?q{ e’ 2(8m — n) — bm, + 3n,

—HE+5ABm-n+dn)}] e e . (72),

B.D= —%wpﬂcﬁ[{c”+2es—§(cs+5e3):’2; ::}{3m1—nl—(3m—n) }

3m, - n,+4n ]
geed 217 " " (2(8m—-n)-5 3 3).
+30 S A (o5 ) — 5,4 3} (73)
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Substituting the value of A in (8) and that of B, in (10) we have
the displacements in the core and outside the layer. Again substi-
tuting for A, and B, in (9) and changing the sign of p* in the
particular solutions we have the displacement in the thin layer.
The solution so obtained is in all respects complete.

Assuming the bulk modulus and rigidity positive quantities, we
may easily prove that D is essentially positive and A essentially
negative. Thus by (5) and (8) the three principal stresses at every
point in the core consist of three equal pressures of constant value.
If 3m, —n,>3m —n the value of B, is essentially negative, but if
(8m — n)/(3m, — n,) be large and ¢ — ¢ be not very small B, may be
positive. 'We conclude from (5) and (10) that outside the layer the
radial stress is always opposite in sign to and numerically double
of the transverse stress; the radial stress is necessarily a tension
if the layer have a larger bulk modulus,—i.e., is less compressible—
than the other medium, but if the layer be considerably more
compressible than the other medium, and be neither of unusually
great rigidity nor extremely thin, the radial stress may be a pressure.

§ 12. To enter into details in the general case would involve
dealing with very cumbrous algebraical expressions. I shall thus
consider only a special case, which sufficiently illustrates the nature
of the results. Thus let

m="n,
or suppose that the layer has the same rigidity as the other medium
and differs from it only in compressibility. In this case we find :

in the core

—~ 2 2
ufr=rr](3m-n)= - gwmi —{c-en” +c e . (74),

in the layer

=3 L[+ = (rfo)( + 2¢%)

m+n
- f;g ml+ ~ {}ee'(m +n) + }(c - )¥(c + 2)(my ~ m)}] ... (75),

SN (RN PRI, o
=32 o= o r)(om—m) + 42

2 e, n(m, —m)]
+ 47% + 6re® + 3¥)n + 407'(6 e)(c + 2e).--m+—n ... (76),
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outside the layer

Us _ _;l:= _e wp* (0‘3)2{1 9 2 3
™ in 9mq—'+n v 3(2¢* + 4c%e + 6ce® + 3¢®)
+ e+ 2e) "ﬂ},,,m).

c m+n

From (76) we find for the radial stresses at the inner and outer
surfaces of the layer the respective values

)zc+2e 3m-n (78),

("l)o - gﬂpz(c m+n

(7‘7‘1 Yo = 8mp L_'_ (_”;_")_{g(%! + 4c% + 6ee® + 3e*)
m+n
c+ 2e -m -
4ol c_) _’::M wor (79).

Comparing (74) with (78) and (77) with (79) we see that our
solution gives, as it ought, complete continuity in the value of the
radial stress.

§13. To examine in detail the solution for a layer of any
“thickness would occupy too much space. When the layer is very
thin the first approximations to the displacements, strains, and
stresses in the core and outside the layer are given by (19) and (20),
when -o? is replaced by (ph)’. The results so obtained apply
whether the media outside and inside the layer are the same or
not, and so are in one way more general than the results (74)-(77).
Their degree of approximation is not however sufficiently close to
show the variation of the strains and stresses throughout the
layer. This variation may be satisfactorily illustrated by the
special case, n, =n, 50 we shall confine our attention to it. Thus
taking (75) let -
c-e=h,r-—e=¢
80 that & is the thickness of the layer and § the distance of a point
in it from the inner surface, and expand in powers of the small
quantities h/e and £/e to any required degree of approximation.
For our present purpose we may content ourselves with

e (SIS St L
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As first approximations we find for the principal strains and

stresses throughout the layer:
2 3

wlr= i m+n’
dasd g B (1 gmem_gf min
dr = gt m+n m+n A m1+n}’ L (81)
23m—-n )
7= 2mp! {Sz L m+n}
= - 1+3f1- g)( —n)(m+n)
0 o'k { * ( n(m1+n) J

Thus the tra.nsverse strain is always a compression and if m, >n,
as appears the case in all satisfactory experiments, the transverse
stress is always a pressure. The radial strain is a compression at
the inner surface if 3m —n>2(m, —n),

which will be the case unless the layer be much less compressible
than the adjacent media. The radial strain is algebraically greatest
at the outer surface where it is always an extension. The radial
stress is always a pressure at the inner surface, a tension at the
outer, and varies continuously throughout the thickness.

The maxima values s and S of the greatest strain* and the stress-
difference *—i.e., the difference between the algebraically greatest
and least stresses at a point—occur at the outer surface, and
we have

—_ 2
s=47ph?/(m +n), } (82).
S=4mp? *nf(m+n)

It is easy to prove that the dilatation vanishes over the outer
surface and elsewhere is negative, so  that the volume occupied by
the layer is reduced.

As first approximations for the increments in the radius ¢ and
thickness A of the layer we have

Sefe= — §mwph?/(m + n),

2
Shih= gm0 B m-m ... (83).t
m+n m+n
* The magnitude of one or other of these quantities is frequently regarded as
measuring the ‘‘ tendency to rupture” in the material. See Philosophical Magazine,
September 1891, pp. 239-242.
+ The letter § denotes the increment of the quantity denoted by the followmg
letter.
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Thus the radius of the shell is always reduced. The thickness

is increased or diminished according as the shell is less or more
compressible than the adjacent media.

GRAVITATIONAL MEDIUM, Two LAYERS.

§ 14. The case of two gravitating layers in which the elastic
constants have the values m,, n, while in the surrounding media
they have the values m, n, may be deduced from the treatment of
the two electrostatic layers by changing the signs of p,% p,’ but not
of p,p, where p,, p, denote the densities of the inner and outer
layers, the radii of whose surfaces in ascending order of magnitude
are ¢, ¢, b, a. 'We shall only glance at the case when the thicknesses

c—e=h, a-b=h,
are very small. Putting
pihy =01, pohiy =0y

we find from (56), (57), (58) as first approximations, employing % as
before for the bulk modulus outside the layers,

in the core

% = % =- ;m: {07 + 2o100B) + o) .. (84),
between the layers

U= — % m:_ n["{"' 3+ 2005(c/b)’} + ' a7 - (83),

Try=— gmLM[ak{o; +20,05(c/B)} — 4n(e/r)?] ... (86),

outside the outer layer
— Ty s
__’r“‘ = %: = §__:+ n{o-l’c’ + 207046% + 0,7°} ... (87).

To a first approximation we have
wfr = (Us]r)ey a0 (Us/r)y = (Ue/T)r

Thus, since the radial displacement is continuous, we deduce that
the transverse strain in each layer has a nearly constant value, that
value being given for the inner layer by (84) and for the outer layer
by the value of u,/r in (87) when r=a. We also know the values
of the radial stress over the surfaces of the layers from the fact that
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there is no discontinuity in that stress. All the strains and stresses
in the present case vary as the squares or products of the thick-
nesses of the layers.

In the previous gravitational problems the stresses we have
found are those which maintain equilibrium when forces at a
distance act. If we suppose the stresses reversed we get the stress
system required te propagate gravitational forces in a hypothetical
medium. These reversed stresses are to be regarded as residing in
the medium and it is this medium and not any sensible substance
to which the elastic constants of the solution belong. How such
stresses may be excited, or what connection there may exist between
the medium and sensible matter does not come within the scope of
the present enquiry.

SINGLE GRAVITATING SHELL.

§ 15. The problems previously considered are of a speculative
nature referring to the action of some medium to be classed under
the general title “ether”. To prevent misconception we add the
solution of the corresponding problems in their relation to the actual
visible matter of which the spherical layers are composed.

The first problem then is that of a spherical shell of ordinary
isotropic material, say of density p and elastic constants m, =,
existing alone in space, acted on by no surface forces and no bodily
forces other than its own gravitation. The potential of the bodily
forces in the shell, supposing its radii ¢ and ¢, is given by

V= —%mp(r® + 2 7Y).
The solution in arbitrary constants is analogous to (27), but the
constants must now be determined from the conditions that the

radial stress vanishes over both surfaces. It is unnecessary to
record the values found for the constants. The displacement is

u=3_"" [%r’+e’—

I (- ) Em-+7)

(¢*-€°)(8m —n)

+20(8 = )m =)} - 2 (e = ) Om )

-e‘c’(c—e)(m—n)}] (88).

The strains and stresses may easily be deduced. The radial stress
it will be found vanishes, as it ought, over both surfaces.
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§ 16. The most interesting case for comparison with the previous
problems is that of a very thin shell. For it we find, with our
previous notation,

- _TPh(mtn) (1 A m ¢ m—n}
“ 2n(3m - n) +4 e m+n e—m+n ’ (89)
3n )
~ 9 7 — {1 _m+
R I L

Comparing (89) with (81) we see that in both cases the radial stress
is of order 4% but the radial displacement in (81) is also of .order 4
whereas in (89) it is of order % and so enormously greater. In the
case of the ¢ ether ” media the contraction of the layer was opposed
by the contiguous media, and it was the action of the latter media
that sustained the gravitational forces. In the present case the
forces opposing the contraction of the shell are derived solely from
the elastic stresses in itself, and to produce transverse stresses of
sufficient intensity for this end requires a contraction of very much
greater magnitude than in the previous case. For purposes of
comparison it will suffice to confine our attention to the first
approximation in the present case. We shall employ the same
notation as before, and in addition shall put

n(3m — n)/m=E,
(m —n)[2m=n,
41rph =9
so that E is Young’s modulus and 75 Poisson’s ratio for the shell,

while g is the acceleration at its outer surface due to the gravitational
forces. We easily find

ufr=>Sefe= - 1gpe =, )

E
du
u _shih= Igpel,
dr E (90).
~ h—
™ %gpe‘f( - 5)
S = -80=1gpe )

Strictly § is the difference between the radial and the transverse
stresses, but the former is negligible compared to the latter. The
largeness of the transverse stress is perhaps the most striking
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feature of the solution. To show that to the present degree of
approximation it balances the gravitational forces, we employ the
known result that when a spherical membrane of radius e contains
a gas at pressure p the requisite tension T in the membrane is
given by
p=2T]e.

In other words the resultant of the tensions is a normal force 2T/e
directed inwards. Thus if instead of tensions in a membrane we
have transverse pressures in an elastic shell whose intensity is

- @, or T, over unit area, and so for the entire thickness T’ per
unit arc of surface, their resultant is an outwardly directed force
whose value is 2T'4/e or by (90) is 27(ph)®. But this is numerically
equal and oppositely directed to the gravitational action of the shell
on itself.

From (90) we see that the strains and the transverse stress are
all to a first approximation constant throughout the thickness.
Assuming Poisson’s ratio positive, the radial strain is everywhere
an extension and the thickness of the shell is increased. The
transverse strain is always a compression and the radius of the shell
is diminished. The radial and transverse stresses are both pressures.
The former is to a first approximation a maximum at the mid
thickness and diminishes numerically as we approach either surface.

§ 17. As an idea of the actual magnitude of the stresses may be
of use, let us consider the approximate value of S in a shell of the
radius of the earth’s outer surface, due to its own gravitation only.
Let ¢’ be the value of *“gravity ” at the surface of a solid sphere of
the same radius ¢ and density p as the shell, then

z' =4mpe,
S=1g'ph.

At the earth’s surface a cubic foot of water weighs about 621 1bs.,
and thus if the specific gravity of the shell be equal to the mean
value of the earth, say 5:5, we deduce for the approximate value of
the maximum stress-difference in a shell ¢+ miles thick, and 4000
miles radius,

'S=(42)i tons weight per square inch.
The conditions are of course totally different from those existing in
the outer layer of a gravitating solid sphere.
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Two GRAVITATING SHELLS.

§ 18. The case of two concentric shells of ordinary matter acted
on solely by their gravitational forces may be solved in a similar
way. In the inner shell, which is assumed not to touch the outer,
the solution is exactly the same as in the previous case because the
forces exerted by the outer shell are nil. The forces on the outer
shell arise partly from its mutual gravitation, partly from the
attraction of the inner shell. The consequences of the former set
of forces we know already, and so, as strains are superposable when -
kept within the limits to which the mathematical theory applies,
we need now investigate only the action of the inner shell on
the outer.

The forces exerted by a shell of radii e, ¢ and density p, on an
external shell are derived from the potential

4mp,(® - )/r = M/r say.

The solution thus obtained for the action solely of the inner shell
on the outer is

Mp, { 2 ® m-n  a®% a-b m- n}
- — 1- kel 91
R ] Wl oy I el - (D)

From this we find for any thickness of shell

du a+b a®h?

_=Mn cee 92

dr i °+ab+b2 m+n 3m n 2m" (92),
u‘,—u,,=%= M a+b m-mn 93
a-b A i ‘@ +ab+b® n(3m-mn) h (3),

e .M (a—r)(r—b)(ab+ar+br) m—-n 94

T T ab 1 ) mEn (%4)

The radial stress is thus everywhere a pressure; it vanishes of
course over both surfaces. The radial strain is everywhere an
extension.

The displacement, and thence the strains and stresses in the
outer shell, due to its mutual gravitation, may be deduced from (88)
by replacing s, ¢, ¢, by p,, b, a respectively.

‘When the shell is very thin let

a-b=h, r-b=¢§

1—
and let ,%,m’l(c aze’)=gv dply =g
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so that g, and g, are respectively the accelerations at the outer
surface of the outer shell due to the attraction of the inner shell
and its own gravitation. Then to a first approximation the com-
plete values for the strains and stresses in the outer shell are
as follows:—

ulr=238aja= - i(gz +2¢,)pa(1 - 1)/E, )

B 8h/h= 39+ 20 psan]E,
S (¢1:) 8
VAL U 3 (95)

= -0= Ha:+ 2g,)p:0

7/

The intensity of the actual bodily force in the outer shell varies
regularly from g, at the inner to g, +g¢, at the outer surface. Thus
the above results show that to a first approximation the strains and
the transverse stress in the shell are the same as if the bodily forces
had at every point of the thickness a constant value equal to the
mean of the actual values. The value of the radial stress depends
even to a first approximation on the law of distribution of the
bodily forces, but this stress is negligible compared to the transverse
stress. So far as concerns the results (95) the inner shell may be a
solid core or a shell of any thickness. The only limitation is that
the two shells must not be in contact.

The Hlements of Quaternions Second Paper).
Dlscvssmn OF THE PROOFS OF THE LAWS OF THE QUATERNIONIC ALGEBRA.
[A4bstract.]

By Dr WiLLiaM PEDDIE.

Three main .aws regulate the treatment of ordinary algebraic
quantities. These are the Associative Law, the Distributive Law,
and the Commutative Law. If a, b, ¢, ..., represent quantities
dealt with in the algebra, the associative law of multiplication
asserts that a(bc)=(ab)c, where the brackets have the usual
meaning that the quantity within them is to be regarded as a
single quantity: the distributive law of multiplication asserts
that (a+b)(c+d)=ac+bc+ad+bd: and the commutative law
gives ab=ba. With regard to addition, the associative law
asserts that (a+d)+c=a+(b+c): and the commutative law
gives a+b=b+a.
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In ordinary algebra, all the quantities are scalars. In a vector
algebra, the further idea of direction is ntroduced, and so we
cannot assert a priori that the quantities dealt with in that
algebra will satisfy the laws of ordinary algebra. The matter is
one for investigation. = With certain fundamental assumptions,
some of the ordinary laws may hold and others may not; and the
particular set which holds, and that which does not, will depend
on the nature of these assumptions.

In framing a new algebra, the first care should be to make its
laws agree as far as possible with the laws of the old; former
assumptions are only to be discarded when they stand in the way
of farther development. The adoptien of certain assumptions may
make the algebra more readily applicable in some directions than
in others; in which case the maximum of general applicability,
consistent with ease of application in the most important directions,
is to be aimed at. And, in dealing solely with the new quantities
introduced in the new algebra, we may assume characteristics
totally different from those which typify the old quantities if such
assumptions enable us to follow out the above rules, while all others
prevent us from doing so. Indeed, such a choice of characteristics
might be most advantageous even in circumstances in which the old
characteristics would also enable us to observe these rules.

When one vector « is changed into another B, the change may
be represented as due to the addition of a third vector y to the
former: so that a+y=p. And, since the notion of a vector
quantity involves only the ideas of magnitude and direction—not
the idea of position—we see that a geometrical interpretation of.
this equation is that the relative position of two points in a plane
is fully given either by means of the straight line joining the two
or by means of the two sides of any triangle described with that
line as base : and, similarly, it may be given by the remaining sides
of any polygon of which the line joining the two points forms the
other side. From this we at once see that the associative and
commutative laws must apply to the addition (and subtraction)
of vectors.

Again when « is changed into B, we may represent the result
as due, not to some addition to a but, to some operation performed
upon a. This is represented by the equation ga =3, where g is the
required operator. Such a method is as natural, as important, and,
in many cases, more appropriate than the former. The Calculus of
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Quaternions, regarded as a vector algebra, recognises and employs
both methods.

The operator ¢ turns a, in a plane parallel to the directions
of a and B, through an angle equal to that contained between two
lines drawn in these directions respectively through a fixed point;
and it also changes its length if necessary until it becomes equal
to that of 8. Now, to determine the plane, two numbers (such
as (1) the azimuth, in a fixed plane, of the line of intersection of
the fixed plane with the required one, and (2) the obliquity of the
planes) are needed. Then another number is needed to determine
the amount of rotation in the plane; after which yet another is
needed to determine the amount of lengthening (or shortening).
In all four numbers are required; and hence ¢ is conveniently
called a quaternion.

An algebra which deals with such operators is, ipso facto, an
algebra of vectors plus quaternions, and so may be more complex
than another in which the subject is not regarded from this opera-
tional point of view. On the other hand, since we have ga=a+7,
it is evident that we can, by means of suitable definitions, express
a quaternion in terms of vectors; and it may be possible to do this
so simply that special symbols for quaternions need never be
introduced, while, on the one hand, the greater complexity spoken
of becomes vanishingly small, and, on the other, greater freedom
of treatment is attained. In accordance with the usages of ordinary
algebra, we may regard qa as the product of ¢ into a. That is to
say, ga is the product of two vector quantities ; or, more strictly, of
a vector and a function of vectors. Now, in physical enquiries, we
have constantly to deal with products of vector quantities—which
products may be either scalar or vector. Hence a vector algebra,
which recognises the quaternion, may be made to deal naturally
(and, it may be, very simply) with such physical investigations.
On the contrary, the algebra which does not recognise the quater-
nion must have introduced into it new fundamental definitions,
totally unconnected with anything else, if it is to deal with scalar
or vector products of directed quantities. And the introduction of
these new definitions into the algebra will make possible the
quaternionic treatment of vectors by its means; so that it would
be quite correct to call it a calculus of quaternions whether developed
or not. Indeed the cry that vectors should be treated vectorially
is merely a play upon words. A vector calculus deals with vectors

A
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and functions of vectors; and, as we have seen, in any quaternion
calculus, a quaternion can be represented as a function of vectors;
5o that the quaternion calculus is, in a sense, purely a calculus of
vectors. This is preeminently the case with Hamilton’s system.

We know of only two fundamental classes of vectors—vectors
having reference to translation along a line, and vectors having
reference to rotation around an axis. Hamilton’s system takes
account of both ideas without introducing separate symbols: the
same vector acts translationally, or rotationally, according as it is
added to another, or is multiplied into another: and there is no
possible confusion of meaning. And, further, provision is made,
simply, for the treatment of scalar products of vectors. But, before
considering the assumptions by means of which these advantages
are attained, it is necessary to consider the laws of multiplication
of quaternions: and, in doing so, it is not necessary to consider the
stretching part (or Tensor) of the quaternion—for that part is a
mere number and so obeys all the laws of ordinary algebra.

We may represent quaternions by plane angles or by arcs of
great circles on a unit sphere. Thus, if PQR be a spherical triangle
whose sides p, g, r are portions of great circles on the unit sphere,
the quantities p, g, r may represent the corresponding quaternions.
Let o be the vector from the origin to the point Q. Then pa is
the vector to the point R, and ¢'pa is the vector to P. But this
is also ra, if 7 is measured from Q to P while p and ¢ are measured
from Q to R, and from R to P, respectively. And we are at liberty
to define r=gp, so that ¢'pa=gpa. This makes the associative law
hold when a, po, and ¢gpa are vectors—a fact which is pointed
out by Hamilton, Lectures, § 310, and by Tait, Elements, § 54. It
defines quaternion multiplication.

Various proofs that the associative law holds in the multiplica-
tion of quaternions have been given. Of these, Hamilton’s proof
(Lectures, § 296 ; EKlements, § 270 ; and Tait’s Elements, §§ 57-60)
by spherical arcs and elementary properties of spherical conics
involves, by definition, the particular assumption of association
just alluded to. His alternative proof, by more elementary geo-
metry (Lectures, §§ 298-301), makes use of the same definition;
and the same remark applies to the proof given in §§ 358, 359
of the Lectures. On the other hand, the geometrical proof given
in Hamilton’s Elements, §§ 266, 267, 272, is based upon the defini-
tion of the reciprocal of a quaternion, which makes the product of
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a quaternion and its reciprocal unity, and leads to the result that
the versor of a product of quaternions is equal to the product of
their versors. It involves the definition, above alluded to, of a
quaternion in terms of vectors: which, in turn, partially assumes
the associative law for vectors (Ba—t.a =f.aa).

The complete proof of the law, by this method, is given in § 272
of the Elements. Other possible proofs are indicated in the
Elements. In the proof, by spherical conics, given in the Lectures,
§ 302, and the Elements, §§ 265, 271, a quaternion is represented
by a spherical angle.

Hamilton also gives proofs (Lectures, § 489 ; Elements, § 223)
of the associative law for quaternions when the distributive law
for veetor multiplication is granted or proved. This proof is also
given by Tait, Elements, § 85. It involves the representation of a
quaternion as the sum of a scalar and a vector. The proof that
this representation is possible and definite (Lectures, § 406 ; Ele-
ments, §§ 201, 202; Tait’s Quaternions, § 77) necessitates the
association of vectors, as above, to the extent Ba—l.a=L.a7%a, (and
the distributive law to the extent (a + ya)a™ =o'+ yaa™). Indeed
all the laws of combination of rectangular vectors are taken for
granted in this proof of the associative law.

The addition of quaternions is defined by the equation (g+7)a
=go.+ra where a is a vector. From this (Lectures, § 449) it at once
follows that the associative law holds in such addition. This
definition of course is virtually an assumption of the distributive
law in the particular case when a, ga, ra, are vectors.

Hamilton’s proof (Lectures, §§ 451-455; Elements, §§ 210-212;
Tait’s Quaternions, § 81) of the distributive law in the multiplication
of quaternions employs this definition of the addition of quaternions
together with the partial assumption of the associative law of vectors
involved in the definition of a quaternion in terms of vectors. It
also assumes the possibility of representing a quaternion as the sum of
a scalar and a vector. The law may be proved, as Tait indicates (§ 62),
by means of this definition and the assumption of the laws of com-
bination of vectors. Tait’s other proof (§ 62) by means of the
properties of spherical conics involves, in its complete generality,
the proof of the commutativeness of quaternion addition.

‘When the partial assumption of association of vectors, used in
Hamilton’s fundamental expression for a quaternion in terms of
vectors, is made along with the partial assumption of distribution
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used in the definition of quaternion addition, the commutativeness
of quaternion addition follows at once (Lectures, §§ 448, 449;
Elements, §§ 195-207 ; Tait’s Elements, § 61) from the obvious
commutativeness of vector addition.

The results obtained up to this point are the following: (1) The
addition of vectors is commutative and associative. (2) A quater-
nion may be represented as a function of vectors. In Hamilton’s
system the quaternion ¢ in the equation ga=gf is defined to be
Ba; and so ga=Lat.a=B.ala=p, for a~a is defined to be unity;
and the steps of the process are consistent with association in vector
‘multiplication. (8) A definition of quaternion addition, which does
not conflict with the distributive law of multiplication, and which
subjects the process to the associative law, is given. (4) With no
further definitions, it is found that the associative and distributive
laws hold in the multiplication of quaternions. Thus all the results
yet obtained are consistent with the rules which must be observed
in the formation of a new calculus.

The graphical representation of quaternion (or versor) multi-
plication shows at once (Elements, § 168, Tait’s Quaternions, § 54)
that quaternion multiplication is not in general commutative. And
another peculiarity is that, if ¢ be a versor which turns any vector
in a given plane through a right angle, the double application of the
operation ¢ reverses any vector in that plane. If a be such a vector,
we get g.ga=q¢% = —a; so that we may put ¢*= —1 in the case of
any quadrantal versor. And if p, ¢, » be rectangular quadrantal
versors we get

P=@®=rt=-1; pg= —qp=r,qr=-rg=p, rp= —pr=gq.

Now consider three rectangular unit vectors 4, j, £; and let them
be perpendicular respectively to the planes of rotation of p, ¢, », so
that we may say that ¢ is parallel to the axis of p, etc. We get at
once pj=k,pg=r; gi= —k gp= —7; = —1. Whence if we write
p=1,q=j, r=Fk, we shall have the immense simplification that no
special symbols are needed for versors—a vector acting transla-
tionally in addition (or subtraction), rotationally in multiplication
(or division).

With this assumption, vector multiplication is associative, and
distributive; but is not commutative; and the square of a unit
vector is negative unity ; the laws for unit rectangular vectors being
ij= —Ji, and = —1, etc.
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Now the idea of a vector is one entirely foreign to ordinary
algebra, in which the square of any unit is positive unity. Hence
the fact that the square of a unit vector is negative unity has no
disadvantage. It makes the scalar part of the product of § into a
equal to the product of the lengths of these vectors into the cosine
of the supplement of the angle between their positive directions;
and it makes the reciprocal of a vector have a direction opposite to
that of the vector itself ; all of which conditions are as natural and
simple as their opposites.

Finally, it is shown by Hamilton, by strict reasoning (ZLectures,
§§ 49-56), that these laws for the multiplication of unit rectangular .
vectors must hold if no one direction in space is to be regarded as
eminent above another and if the ordinary rules of algebra are to
apply in so far that, (1) to multiply either factor by any number
positive or negative, multiplies the product by the same, (2) the
product of two determined factors is itself determined, (3) the
distributive and associative principles hold. ~We see then that
Hamilton’s system is one which preeminently satisfies the conditions
of correspondence to ordinary algebra as far as possible.

Note on a Problem in Analytical Geometry.
By A. J. PressLanD, M.A.
[Abstract.]

The theorem, ‘“If upon the sides of a triangle as diagonals
parallelograms be described, whose sides are parallel to two given
lines, then the other three diagonals will intersect in the same
point,” occurs in Hutton’s Course of Mathematics, 12th ed., vol. II.,
p- 191.

For a proof, see Smith’s Conic Sections, p. 40.

If we are given the point of intersection of the diagonals, and
wish to find the directions of the sides of the parallelograms, the
discussion resolves itself into describing a conic through three points
to have its centre at a given point. The asymptotes of this conic
are the directions required. For a solution, see Eagles’ Constructive
Geometry of Plane Curves, pp. 124, 173, and notice Taylor, Ancient
and Modern Geometry of Conics, p. 164, Ex. 454.

If A, B, C be the three points, D, E, F the mid points of BC, CA,
AB then if the centre lies inside DEF the asymptotes are imaginary,
but they are real if the centre lies inside AEF, etc.
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From the theorem, the following proof of the nine-point circle is
obtainable (Fig. 27).

Take any line CK, and draw rectangles as in the figure,
we have

LMPK=,.PMC- . DKC= LECM - . DCK = . EFD,

therefore F, P, D, E are concyclic. If KD is perpendicular to AC,
PM is perpendicular to BC, and their intersection is the mid point
of CO, where O is the orthocentre. If CK and CB coincide, P is
the foot of the perpendicular from A on BC.

Seventh Meeting, May 12, 1893,

JonN ALisoN, Esq, M.A., F.R.8.E., President, in the Chair.

On the History of the Fourier Series.
By GEORGE A. Gissoxn, M.A.

§ 1. The treatment of the Fourier Series, that is, of the series
which proceeds according to sines and cosines of multiples of the
variable, is in most English text-books very unsatisfactory ; in many
cases it shows almost no advance upon that of Poisson and, even
where a more or less accurate reproduction of Dirichlet’s investiga-
tions is given, there is no attempt at indicating the advantages it
possesses over the so-called proof of Poisson. Nor is the uniformity
of the convergence of the series so much as mentioned, not to say
discussed. I have therefore thought it might be useful to give a
fairly complete outline of the historical development of the series
so far as the materials at my disposal allow. I do not think that
any important contribution to the theory is omitted, but, as I
indicate at one or two places, there are some memoirs to which I
have not had access and which I only know at second hand.

Again it is to be understood that only series of the form

n==0
A+ Z(A,cosnx + B,sinnx),
n=1

n being an integer, are dealt with, those cases in which n is not
integral being omitted in the meantime.
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In many of the memoirs referred to in what follows historical
notes of the work of predecessors will be found, but there are two
writers to whose work I am deeply indebted. In fact these two
have done .their work so thoroughly as to leave practically nothing
for later investigation. The first of these is Riemann, who devotes
the introductory pages of his Habilitationsschrift, Uber die Darstell-
barkeit einer Function durch eine trigonometrische Rethe (Werke,
pp. 213-253) to a summary of the views of preceding mathema-
ticians, that is, those prior to 1854. This summary is masterly
though it is very curious when we consider the influence Poisson has
had in this connection on English writers to note that nowhere
does Riemann allude to his proof. The other writer referred to
is Arnold Sachse who, in his Versuch einer Geschichte der Darstellung
willkirlicher Functionen einer Variabele durch trigonometrische
Reihen (Gottingen, 1879), has in a manner completed the summary
of Riemann; this dissertation is also of very great value and
contains some important additions to the theory due to Schwarz
and derived from his lectures. Unfortunately the German text is
out of print, but a translation appears in Darboux’s Bulletin for
1880. It is this translation which I quote when referring to
Sachse’s Essay. I may also refer to Reiff’s Geschichte der unend-
lichen Reihen (Tiibingen, 1889) where the connection of the trigono-
metric series with the theory of infinite series in general is carefully
discussed.

It may be uscful to remark at the outset :—

That up till the appearance of Fourier’s memoir on the
¢ Analytical Theory of Heat” the possibility of the expansion
of an arbitrary function in a trigonometric series was not
admitted by any mathematician.

That Fourier had a thorough grasp of the nature of such ex-
pansions and gave in broad outline, though not in such detail
as its importance demanded, a sound proof of the expansion,
so that from the time his memoir became known the validity
of the expansion has never been questioned.

That Dirichlet was the first to give a proof in which the restric-
tions on the function to be expanded, in other words the limits
of its arbitrariness, are carefully stated.

That the work of subsequent writers has consisted largely in
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extending the limits given by Dirichlet, while following in the
main his methods, though new ground was broken by Riemann.

And finally, that in comparatively recent times the series has
been shown to be in general uniformly convergent. We have
thus to keep before us these three points: first, the possibility
of the expansion of an arbitrary function ; second, the limits
to the arbitrariness of the function in order that the series
which represents it may converge to the value of the func-
tion; and third, the nature of the convergence, whether uniform
or not.

§ 2. The controversy as to the possibility of expanding an
arbitrary function of one variable in a series of sines.and cosines
of multiples of the variable arose about the middle of last century
in connection with the problem of vibrating chords. To appreciate
properly the difficulty which the expansion presented to the mathe-
maticians of that day we must bear in mind that their conception
of a function was much more limited than ours. In the Introductio
in Analysin Infinitorum, vol. IL, cap. L., § 9, Euler says that
curves may be divided into continuous and discontinuous or miwed
a curve is continuous when its nature can be expressed by one
definite function (.e., analytical expression) of the variable; if on
the other hand different portions of the curve require different
functions to express them the curves are called discontinuous or
mixed or irregular as not following the same law through their
whole course but being composed of portions of continuous curves.
Curves which are discontinuous in this sense seem to have been
considered to be beyond the scope of analysis; on this point
reference may be made to Lagrange, Oecuwvres, I., p. 68, and to
D’Alembert, Opuscules, I, p. 7. As a consequence or accompani-
ment of this view it was supposed that if two functions of a variable
were equal for any definite range of values of the variable they
must be so for all values so that if the curves which represent them
coincide for any interval they must do so entirely. Thus the
objection was constantly urged that an algebraic function could
not be represented by a trigonometric series for the latter gives a
periodic curve while the former does not. Fourier was the first to
see and state that when a function is defined for a given range of
values of the argument its course outside that range is in no way
determined. One obvious consequence of thése views is that no one
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before Fourier could have properly understood the representation of
an arbitrary function by a trigonometric series.

§ 3. D’Alembert in the Mémoires de I'Académie de Berlin for
1747, vol. III., page 214, discusses the problem of the vibrating
chord. The origin of co-ordinates being at one end of the chord
whose length is /, the axis of x in the direction of the chord
and y the displacement at time ¢, he shows that y must satisfy the

equation %Z =a2§2_£/2 (In the memoir a=1, but I keep the usual

form). He obtains the solution y=f{at+ x)+ ¢(at—x), and since
y=0 for x=0 and x=1 he finds y=£{at+x)—flat —x) and shows
that / represents such a function that flz)=£z+2{). In a memoir
immediately following this one in the same volume (p. 220) he seeks
to find functions which satisfy this relation of periodicity.

In the Mémoires for the following year (1748) vol. IV., p. 69,
Euler discusses the same problem. He observes that the motion of
the string will be completely determined if its form and the velocity

“of each point of it be known for any one position. He deduces
the equation y=¢(x+at)+ ¢P(x—at) where ¢ is such that ¢(as)
+¢(-at)=0 and ¢(l+at)+¢(l—at)=0 for every ¢; and from
these equations which ¢ must satisfy he concludes that every curve
whether regular or irregular which consists of repetitions alternately
below and above the axis of any given curve which the string may"
be supposed to take (each point where the curve crosses the axis
being a centre of the curve) is suitable for representing ¢. He then
shows how the ordinate of any point at any given time may be
determined by a simple geometrical construction. He gives on
p. 84 as a particular solution for ¢(x) the equation

B(x) = asin’%” +8 sing—qlr—x + ysin3_1;:f +ete.

Euler’s solution is clearly more general than that of D’Alembert
who always supposes the curve taken by the chord to be regular;
but in the Mémoires for 1750, vol. VI,, p. 355, the latter objects
that Euler’s solution is not more general than his own because the
extension to ¢rregular curves is illegitimate. He does not attack
any special point in Euler’s investigation, but seems rather to rest
his objection on the illegitimacy of concluding from regular to
irregular curves since the latter, not being expressible by one
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definite function through their whole course, cannot form the
subject of analysis. Euler replies in the Mémoires for 1753,
vol. IX,, p. 156, by presenting his solution in great detail and
asking where in his proof the law of continuity is assumed.
D’Alembert does not seem to have answered Euler’s challenge
directly although repeating his previous objection (Opuscules, vol. L.).
Lagrange while agreeing that Euler’s solution is more general than
that of D’Alembert still holds his proof to be unsatisfactory on what
I suppose to be the same general grounds as D’Alembert. (Lagrange,
Ocuvres, 1., p. 68). If, as Lagrange seems to hold, and as Euler him-
self in the Introd. in Anal. Inf. leads us to think, an irregular curve
cannot form the subject of mathematical investigation, there can be
no question, I think, of the soundness of the objection to Euler’s
proof, and it was precisely because of his doubts that Lagrange
undertook his investigation of the problem. Euler, however, seems
always to have held to the accuracy of his solution and the other
two to their objections, the one of these two to the generalisation
and the mode of reaching it, the other not to the generalisation but
only to the mode of reaching it; the difficulty was only explained
by a better insight into the nature of functions and their mathe-
matical treatment.

§ 4. The bearing of these memoirs and of the discussions as to
the generality of the solution on the subject of this paper is fully
seen when we consider an article- by Darniel Bernoulli on the same
subject which appeared in the Berlin M¢émoires for 1753, vol. IX.,
p. 173. In that article Bernoulli approaches the consideration of
the problem of the vibrating chord from the physical rather than
from the mathematical side and proposes a synthetical solution of
it. Basing his arguments on the expression given by Brook Taylor
in his treatise De Methodo Incrementorum for a particular integral

nrxe_  nmwat

of the differential equation, namely, y = Asin Tcos , and on

the principle of the Coexistence of Small Motions, he maintains that

any position of the string may be given by the equation
2
y= asin7r_;: +8 sin# + ysing’%af +ete.

His arguments are not mathematical and he nowhere attempts to
find the values of the coefficients a, B3, v, etc.. A proof of the same



142

nature as Bernoulli’s in the mode of approaching the question but
much more efliciently developed may be found in Lord Rayleigh’s
Theory of Sound, vol. 1., cap. VI. Bernoulli observes in § XIII.
that Euler had given the same equation as he does (in the memoir
of 1748 referred to above), but he holds against Euler that this gives
a perfectly general solution.

Euler combats Bernoulli’s position in the memoir of 1753
already noticed in connection with D’Alembert. The earlier part
of it deals with Bernoulli’s solution. Euler admits that if it be
general it is much better than his own; but he does not admit its
generality, for that would be equivalent to admitting that every
curve could be represented by a trigonometric series and this pro-
position he considers to be certainly false, seeing that a curve
given by a trigonometric series is periodic—a property not possessed
by all curves. In seeking to establish his position he remarks
(p. 200) that it might be argued that since there is an infinite
number of disposable constants, «, B3, y, etc., at disposal, it must be
possible to make the proposed curve coincide with any given curve,
but he states explicitly that Bernoulli himself has not used this
argument. Bernoulli indeed does not seem in his memoir of 1753
to have quite grasped the mathematical consequences of his solution ;
. his results seemed so satisfactory in their explanation of the facts of
- observation that he was prepared to maintain the generality of his

solution on that ground alone. In a letter addressed to Clairaut
and published in the Journal des Scavans for March 1759, pp. 59-80,
he states very clearly the substance of his memoirs of 1753 and the
line of reasoning that had led him to his treatment of the problem.
In criticising Euler’s views of his memoirs he (p. 77) explicitly
accepts the argument from the infinite number of disposable con-
stants, though in so doing he really detracts from the merit of his
work. On p. 78 he indicates a proceeding that would appear to be
that subsequently developed by Lagrange. He takes seven points
on a curve and says he succeeded in determining e, B3, y, etc., so as
to make the trigonometric curve pass through these points, and he
adds that the process might be continued. He gives, however, no
proof of his statements.

§ 5. When the controversy was at this stage a memoir by
Lagrange on the Nature and Propagation of Sound appeared in
the first volume (1759) of the Miscellanea Taurinensia (Lagrange ;
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Ocuv., vol, I.). In the introduction he gives a lucid statement of
the methods of the three writers we have named, accepts Euler’s
solution as the most general, but objects to his mode of demonstra-
tion, and proposes to obtain a satisfactory solution by first considering
the case of a finite number of vibrating particles and then seeking
the limit for an infinite number—that is for a chord. The theory
deduced in his fourth chapter for a finite number of particles is the
same as that of Bernoulli on whose synthetical solution he bestows
high praise (§ 32) ; but for our purposes the thirty-seventh article is
the most important, in which he seeks the limit for an infinite
number of particles. The length of the string being a and the
initial co-ordinates of a point on it being (X, Y) the first part of
the equation for the ordinate of the point (x, ) at time ¢ is given by

[>]
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“where the integral sign j is used to express the sum of all

these series and the integrations are to be made on the supposi-
tion that X, Y are the variables and ¢, « constants.” This seems
undoubtedly to be a Fourier series in the proper sense of the term;
yet it appears to me doubtful if Lagrange actually supposed it to
be such. It could hardly have escaped his notice that for a definite
value of ¢ this is simply Bernoulli’s solution. It was doubtless no
part of Lagrange’s purpose, as Reiff remarks (p. 134), to determine
the co-efficients in Bernoulli’s series, but rather to obtain the
functional solution given by D’Alembert as he actually does by
summing the series by trigonometric methods. At the same time
if Lagrange had really meant the summation to be what we now
call an integration his subsequent evaluation of the series would
not have possessed that generality he contended for, as it starts
from a result that implies the continuity of Y. Exactly the same
objections he urges (§ 15) against Euler could have been brought
against himself. Many parts of the investigation of § 38, where he
sums the series, are according to modern notions very loose; yet
leaving this aside the investigation shows great analytical skill, and
in some respects anticipates the procedure of Fourier as will be
pointed out later. All the same I do not think that Lagrange
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himself nor any of his contemporaries can have understood the
above series as anything else than a finite series, and I believe that
the m used by Lagrange is not made really infinite until he has
summed the series and passes to the functional solution. Further
Lagrange was quite alive to the merits of Bernoulli’s solution and
even proposes a proof (Oewvres, I., pp. 514-516) of the proposition
that the initial figure of the chord, when it has one, is contained in

the equation
3.

y=asin™® + sin>™% + ysin._l + ete.
a a a

‘With this result before him it is almost beyond belief that Lagrange
would fail to see its identity with his own formula quoted above,
had he supposed m to be really infinite. With m infinite his
solution would have been complete and the subsequent investiga-
tions mere transformations of it without adding anything to it.

Another investigation by Lagrange belonging to the same
series of memoirs on Sound and printed on pages 552-554 of the
first volume of his collected works is that repeatedly quoted by
Poisson and others as the first investigation of the representation
of a function by a trigonometric series. I think, however, that
this investigation stands on the same footing as that just discussed
and I hold that Riemann’s view of it is correct. It is no doubt
hard for us to understand how near Lagrange came to the con-
ception of expanding an arbitrary function in an infinite series
without ever actually attaining to it, especially when we see him
in this memoir adopting the method of passing a trigonometric
curve through a finite number of points on a given curve and
succeeding in solving the necessary equations in the manner used
later by Dirichlet (Dove’s Repertorium). That he did not really
solve the problem of expansion in trigonometric series is I think
best understood from the circumstance that neither he nor any of
his contemporaries (unless perhaps Bernoulli) believed such expan-
sion to be possible. It would be interesting to have documentary
evidence of the truth of Riemann’s statement (Werke, p. 219) that
Lagrange strongly objected to Fourier’s conclusions in regard to
such expansions.

§ 6. For the next forty years there seems to have been almost
no progress made towards a solution of the difficulties raised in these
discussions; but before passing to Fourier mention must be made
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of certain results given by Euler. In his memoir Subsidium Calculi
Sinuum (Novi. Comm. Petrop., tom V., ad annos 1754-55) he
obtains (p. 204) the following equations :—

sine — 3sin2¢ + 3sind¢ — ete. = §¢

cos¢ — cos2¢ + Jcos3d — ete. = ™_ f

12 4
Reiff remarks (p. 128) that these series are the first in which
rational functions are expressed by series of sines and cosines of
multiples of the variable. It is somewhat remarkable that Euler
should have accepted these results, but his views on the validity
of results derived from the use of the series were extremely loose.
A more important result for the general theory is contained in

a memoir presented by him to the St Petersburg Academy in 1777
but not published till 1798, long after his death. In the Nova Acta,
vol. XL, p. 114, this memoir appears, and in it he says that if &
can be expanded in a series of the form A + Bcos¢ + Ceos2¢ + ete.
then

A= 1 J' Pd, B=£-[<I>d¢cos¢, etc., where the limits of the in-
™ T :

tegrals are 0 and =. Fourier’s method of determining the coefficients
is thus explicitly given by Euler as Jacobi remarked (Crelle’s
Journal, vol. IL., p. 2); but the use that Euler makes of the
series and the words in which he introduces his memoir seem to
me to render it doubtful if Euler, as Sachse appears to think (p. 47),
drew the hint that led to his method from Lagrange’s memoirs.
Except for the mode of determining the coefficients the memoir
goes but a very little way towards settling the possibility of
representing an arbitrary function by a trigonometric series.

§ 7. Glancing for a moment over the work of Euler, Bernoulli,
and Lagrange, it is easy for us to see where the difficulties of the
subject lay ; they lay in the inadequacy of the notion of a function.
Both Euler and Lagrange seem at times as if they had in part
transcended the limits of their original conception, Euler in giving
his geometrical constructions for the solution of the equation for the
vibrating chord and Lagrange in his method of constructing the
equation to a curve by first finding the equation of a curve passing
through the vertices of an inscribed polygon. Yet I do not think
either of them got beyond the old notion of continuity and its con-



146

sequences in any of their writings on the subject of trigonometric
series. But great part of their work could be and was of immense
service to Fourier, as he himself indicates (Théorie Anal. de la
Chaleur, § 428), when he approached the consideration of the
subject with his conception of a function as given graphically.

§ 8. Fourier’s first investigations on the Theory of Heat were
communicated to the Academy of Sciences on the 21st December
1807. The memoir of 1807 has never been printed though it has
now been recovered, and it is to the memoir sent to the Academy
in 1811 and crowned on the 6th January of the following year
that we must look for Fourier’s exposition of the representation
of arbitrary functions by trigonometric series. In all essential
points the treatise Théorie Analytique de la Chaleur, published in
1822, is a reproduction of the memoir of 1811, and I shall thereforc
refer always to the treatise, in the recent edition of it by Darboux.

The third and the ninth chapters of the treatise are those in
which the trigonometric expansions are most fully considered, and
even a casual reading of these is sufficient to show how thoroughly
Fourier cleared away the difficulties which had puzzled his pre-
decessors. Even before the publication of Dirichlet’s proof in
1829, which has generally been considered to be the first satisfactory
exposition from the mathematical standpoint, Fourier’s results had
been universally accepted; no doubt some of Fourier’s series were
criticised but in many cases the errors were those of the printer and
not of Fourier himself. At the same time there can be no question
of the general acceptance of his main theorem on the subject of the
expansion of an arbitrary function.

=< The treatise is so well known that I need not spend much time
{ in analysing it; but I may call attention to one or two points. In
article 428, 12° and 13° Fourier sums up his views on the nature of
a function which admits of expansion ; it is not necessarily continu-
ous in the old sense of that word but may be composed of separate
Sunctions or parts of functions. By these phrases he means a
function flz) which has values while x lies between given limits but
is zero for all other values of 2. The function may even become
infinite between the limits (§ 417) and in general the function need
only be given graphically. Again, Fourier has accurate conceptions
of the convergency of series (§§ 177, 185, 228, 235, etc.) though he
occasionally makes slips (for example in § 218 where he puts
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1-141-1+etc. =14, see also § 420, p. 506) ;. in this respect both
Euler and Lagrange leave much to be desired. A more important
question remains, namely, how far did Fourier succeed in his mathe-
matical demonstration that the series which represents the function
actually converges to the value of the function? In special cases
which he gives the convergency of the series and its equivalence with
the function are, as he says, easily demonstrated ; but it is usually
maintained (e.g., by Riemann, Werke, p. 220) that he gave no
mathematical proof of the general theorem. I think, however,
that in this respect Fourier has received less than justice. No
doubt, the investigations of chapter IIL. can hardly be accepted
as doing more than suggesting the truth of the general theorem,
but it is different with those of chapter IX.. In these as in nearly
all the special series of chapter III. he adopts the method, followed
afterwards by Dirichlet, of taking n terms of the series and seeking
the limit for n infinite. This method indeed seems to me to be that
of Lagrange in § 88 of his first memoir referred to above, and it is
unquestionably the most satisfactory. Fourier’s treatise being in
everybody’s hands I need hardly do more than refer to § 423 and
suggest that it should be compared with Dirichlet’s proof. At
bottom Fourier’s reasoning is, I believe, quite sound and it seems
to me to contain the kernel of Dirichlet’s proof. No doubt Fourier
did not develope his proof with the extreme precision that the
importance of the theorem demanded and that Dirichlet afterwards
gave to it ; still the substantial accuracy of his reasoning is beyond
dispute. Darboux in a note pp. 511, 512 of his edition of the
treatise calls attention to the matter, and his contention on behalf
of Fourier seems to me quite justified by the facts. Before seeing
this note I had formed the opinion I have expressed and I was glad
to find it confirmed by so able an authority.

I content myself with this meagre reference to Fourier, because
his treatise is so universally read even yet by all beginners in
the study of mathematical physics that it would be waste of time
to delay over it. I cannot pass from it however without remarking
that it seems to me peculiarly unfortunate that instead of studying
Fourier’s own mode of presenting the proof of his series-theorem,
or, what would have been even better, taking Dirichlet’s memoirs -
on the same subject as guide, English writers have usually drawn
their exposition from Poisson who studiously denied to Fourier his
just claims in this field. As a matter of fact Poisson’s proof is
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invalid and seems to have been recognised as such almost from'the
first by the great continental writers. At any rate, Dirichlet does
not, I think, allude to it and Cauchy lays his finger on the weak
point, as I shall indicate shortly. Nor does Riemann in his
historical notice refer to Poisson except to call in question his
estimate of Lagrange’s position. No doubt the integral that Poisson
makes use of is of great importance, and has played a fundamental
part in many modern developments; but its value appears after
the Fourier series has been established and not in the proof of the
series itself.

l' = § 9. Poisson has treated the trigonometric series now dealt with

in several places and always in practically the same way. I may
refer to the Journal de U Ecole Polytechnigue vol. XI. (1820), vol. XTI.
(1823), and to the treatise 7héorie de la Chaleur (1835). His process
is as follows :—

1-p? g
h 1 =1 2 s -
When p<1, = Zpoos(z < a) £ 7* + Zp cosn(x — u)

Multiplying by f(a) and integrating between —r and =, he gets

J’ T (1-p)f(a)de
_r 1 - 2pcos(x —a) +*

=jt f(@){1+25p"cosn(z - a)}da

When p =1, the integral on the left has all its elements zero except
when a=z. Putting then p=1-g, where g is small, and z--a==z

he gets for the value of the integral 2 f (m)J where ¢, ¢ are

- 9’ 2
€
small ; but no error will be introduced by making the limits infinite,
so that when.p =1, the integral is equal to 2mf(x). Making p=1
on the right side he deduces

1 pm
fa)=5- J' F(@){1 +23cosn(z - a)}da
-
The proof is usually extended so as to include the cases in which
A=) presents discontinuities.
On this proof there are two remarks to be made. In the first

n
place, if the series J‘ S(@){1 +2Zp"cosn(x — a)}da be denoted by
-

ZA,p" and if we write F(p)=2A, 2" then we are only justified



149

in assuming F(1)=Z2A, when the series ZA, is convergent.
This theorem is generally quoted as Abel's Theorem (see
Chrystal’s Algebra Pt. IL. p. 133). But in the present case
this procedure amounts to assuming that the trigonometric
series is convergent, and the convergency of the series is not
proved by Poisson. In other words one of the greatest difficulties
of the subject is tacitly passed over. It may be added that unless
the function f(x) be very greatly restricted it does not seem possible
to prove the convergence of the series from a consideration of the
integrals which give the coefficients. In the second place, the
quantity p has no natural connection with the series and is a source
of ambiguity that is not inherent in the series itself. This is seen

when the integral -r (1 - %)/ (a)de is more carefully
_x 1 = 2pcos(z — a) +p*

studied, as in the writings of Schwarz (see his two memoirs on the
Integration of the Equation % + g:;: =0 in his Collected Works, vol.
II). If we describe a circle with radius unity and take a point in

it having (p, x) for its polar co-ordinates, then the limit of the
integral for p=1 depends, except when f(x) is continuous and
periodic, on the path by which the point approaches the circumfer-
ence. Thus if f(w—0)=+f(—w+0), the limit when xz=n is
w{ f(w - 0)+f(—7m+0)} + 0{ f(z - 0) - f(- 7 +0)} where 6 may have
any value between = and -w. But the limit of the series when

x = is perfectly definite, namely the value of the above expression
when 6 =0. However valuable, then, Poisson’s integral may be in
other respects it does not seem to furnish a satisfactory starting ‘
point for the investigation of the series in question.

§ 10. After Poisson, Cauchy attacked the problem in ‘his Mémoire
sur les dévelopements des fonctions en séries périodiques (Mem. de U Inst.
vol. VL. ; read 27th Feb. 1826). He starts with the series

J:ﬂ#)d# + 2r :é}osg—zf(w - ) f(w)dp.

To prove that this has for sum @ f(x) he replaces it by another series

2nmwi 2nwi

a

I:f ()dpe +:§9""lj: e " )y +’§?9"“J e

"o O
0

where =1 - ¢ and ¢ is a small quantity. The series, when summed,
gives
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f {1 2," + }ﬂ,u)d#

C-W_f ma—n)_

and this integral belng evaluated in P01ssons manner is equal to
af{x). But Cauchy recognises one of the faults of Poisson’s proof
and tries to prove the convergence of the series when §=1. To do
this he throws it into the form
ﬂx)__j ﬂ,u)d,u.+ " {j(a+m) -fvi) Ra-vi)-A- m)}dv
0

2xxi 27y —2xai 21rv
@ €2 -1 € a

This equation, as Cauchy remarks later, may be deduced by integra-

2r .
tion of the functions f{z)/ {ei'T(z_"')‘ - 1} round a properly selected
boundary. As to the function f{2) it must remain finite for all real
or imaginary values of 2. He now, instead of examining the integral
in its closed form, throws it again into a series of which the general
term is, if z=2nwv/a

2n1r1, _2nru-[ {f( Zmr f( 2nmw )}dz
2nr:m

- I e ) (o)

so that when = is very large the general term approximates to

(7@ - f@)~ sin 27

The series of which this is the general term is convergent, and he
therefore concludes the trigonometric series to be convergent.

Now in regard to this proof two points in particular require
notice. First, as Dirichlet noticed, there may be two series whose
terms differ infinitely little from each other when n =00, and yet
the one series diverges while the other converges; for example

s( :/ )" converges while s( :/1)" (1 += Il)”) diverges. Cauchy’s
n n N

proof of the convergence thus fails. But, as Reiff remarks (p. 189),
it is easy to see that the integral in closed form is finite if 0 <z <a,
so that this objection might be overcome. But, secondly, the con-
ditions imposed on f{z) reduce that function to a constant. Riemann,
who pointed this out, states that Cauchy’s conditions are not really
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necessary for his proof ; it is sufficient that the function f{z + y) be
determinable such that for all values of y it remains finite and for
y =0 becomes f{z). That such a function is determinable Riemann
holds to be established, and therefore apparently that Cauchy’s
proof is valid. This remark of Riemann’s is pretty fully considered
by Sachse, pp. 48-52, and I content myself with referring to him,
only adding that Riemann’s proof of the possibility of determining
a function by means of its values along a boundary is not now
accepted, and that the necessity of using other methods of estab-
lishing the proposition in question carries with it the invalidity of
Cauchy’s proof.

For another and more general investigation by Cauchy I would
refer to his Ocuvres complétes, vol. VIL (2nd ser.), p. 393.

§11. I come now to the classical investigations of Dirichlet.
Of his two memoirs dealing with the subject of the Fourier Series
the first appeared in Crelle’s Journal, 1829, vol. IV., pp. 157-169,
the second in Dove’s Repertorium der Physik, vol. 1., pp. 152-174.
This second memoir is so clear and simple that it has become a
model of nearly every discussion on the series in question contained
in continental text-books, and probably there is no memoir in the
whole range of mathematical journalism that has been so completely
and so literally transferred to the text-books. Dirichlet saw that
the convergence of the series does not depend solely on the decrease
of the terms, but is due also to the presence of negative terms.
(See the introduction to his paper on expansion in Spherical Har-
monics in Crelle’s Journal, vol. XVIIL). Hence he adopts the .
method, which Fourier had employed, of summing to » terms and
finding the limit for n=w. It will be convenient to follow the
second rather than the first memoir. “‘1

The first 2+ 1 terms of the series for ¢(z) may be written

and this integral may be divided into

+2 =z

et 08, L gt 9
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and the limit for n=w has to be found. The investigation hinges

smk,B f(,B)rIB where £=2n+1 and

upon the limit for £=o of J

O<h< or ==/2. The function f(,B) is supposed in the first place to
be continuous, positive, and not increasing, while 8 goes from 0 to
h. The integral is decomposed into a series of partial integrals with
limits O, w/k ; =/k, 2w/k; etc.; rw/k, h where 7wk is the greatest
multiple of w/% contained in . Each of these integrals is less in
absolute value than its predecessor and the signs of them are alter-
nately positive and negative. The integral is thus found to lie
between limits which for n = coincide in the value }mf0). The
restrictions on A{B) are then partly removed; it may either be
constant or negative or a not decreasing function as 8 goes from

*SinkB qgyap =0 it
, sinf

0<g<h< or =_. By this last result it is possible to extend the

-

0 to A. It follows immediately that L j
k=0

first theorem to all continuous functions which have a finite number
of maxima and minima, while if f{8) be discontinuous for 8=0 the
limit is }=A+0) if % be positive but — jxf - 0) if 2 be negative.
The limit for n =0 of the sum of the first 2n 41 terms of the
trigonometric series is thus 3{¢(x+0)+P(x-0)} if z+ +=
but }{p(r - 0)+ (-7 +0)} if x= £

The results may therefore be summed up as follows :—The limit

m=n

for n= oo of the series 3a,+ Z (a,cosma + b,sinmx) where
m=1

1" 1 ("
A = —J ¢(a)cosmada, b,,= —I ¢(a)sinmada
TJ_» T .

is Ho(x-0)+dx+0)}  if x+ +7
but H(r-0)+$(-7+0)} if =27

provided that while — 7 =or<x=or<m, ¢(x) has a finite number
of maxima and minima, a finite number of discontinuities, and does
not become infinite. Of course if ¢(x) is continuous near z, the
value is simply ¢(x). These conditions (with another regarding
infinite values of ¢(x) to be given presently) are usually called
Dirichlet’s conditions.

It is perhaps worth observing that the mode of conducting the
investigation prescribes the order in which the terms are to be
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taken, and the order is of course essential when the series is ,
semi-convergent.

§ 12. The definite form which Dirichlet gives to the sum of the
trigonometric series suggests that the phrases ‘“the function ¢(x)
can be expanded in a series” or the series represents the function
¢(x)” should be precisely defined, for where there is a breach of
continuity in the function the series has a definite value while the

" function has not. The natural definition seems to be that adopted
by Sachse (p. 55), namely, a series represents a function in a given
interval if its values coincide with those of the function for all
points in the interval with the exception of a limited number of
known points. A Fourier series therefore represents a function
which satisfies Dirichlet’s conditions.

There is one point in Dirichlet’s demonstration which has heen
subjected to criticism in some quarters. According to Dirichlet the
value of the series at a point of discontinuity in the function is the
arithmetic mean of the values of the function at that point. It has
been contended on the other hand by Schlifli and Du Bois-Reymond
that the value is really indeterminate (compare also Thomson and
Tait, Nat. Phil., vol. L, pt. L, p. 59) and that the suin may have all
values between the two values of the function at the point. Sachse
(pp. 56-58) discusses the point and as I have not had access to
Schlafli’'s pamphlet (Einige Zweifel an der allg. Darst. . . . durch
trig. Reihe, Berne, 1874) nor to Du Bois-Reymond’s memoir (Sprung-
weise Werthverinderungen, Math. Ann., vol. VIL) I must simply
refer to Sachse for a fuller notice and also to Heine’s Kugelfunc-
tionen, vol. IL, p. 347. At the same time I may say that these
objections, so far as I understand them, do not seem to me to be
sound as they rest upon the evaluation of a double limit while in the
case of the series there is but one variable to be considered. I have
already referred to the ambiguity of a similar character introduced
by Poisson’s proof.

§ 13. Had Dirichlet not written his first memoir, the paper which
follows his in the same volume of Crelle (vol. IV., p. 170) by
Dircksen would have been a notable contribution to the theory of
trigonometric series. It proceeds on the same general lines as
Dirichlet’s though obviously it is quite independent; but neither
in elegance nor in generality is it compa.rable with his, and it has
practically fallen into oblivion.
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Bessel in Schumacher’s Astronomische Nachrichten, vol. XV1I.,
P- 229, sought to simplify Dirichlet’s proof, but he can hardly be said
to have succeeded, and he certainly added nothing to the general
theory.

§ 14. The conditions given by Dirichlet in his first memoir, as
those which a function must satisfy if it is to be represented by a
trigonometric series, are certainly very general, and in an addition
to his memoir on the representation of an arbitrary function by a
series of Spherical Harmonics (Crelle’s Journal, 1837, vol. X VIIL.,
p. 54) he shows that the function ¢(83) may become infinite at a

finite number of points provided that J’4>(,8 )dB remain finite and

continuous. This condition will be included among Dirichlet’s
conditions when these are referred to. But Dirichlet believed that
a function, with fewer restrictions than those implied in his condi-
tions, could be represented by a trigonometric series, and at the end
of his first memoir promises a paper on the subject. Nothing,
however, except the note in the seventeenth volume of Crelle, just
mentioned, has appeared from his pen in the way of carrying out
the promise. In particular it should be noticed that Dirichlet’s
conditions do not include all continuous functions, since they exclude
every function with an infinite number of maxima and minima ; but
if a function have an infinite number of oscillations in the neighbour-
hood of a point it may be continuous when the amplitude of the
oscillations is infinitely small. Thus the function xzcos(l/z) is
continuous between —7 and = on the understanding that it is
zero for =0, yet this would be excluded from Dirichlet’s conditions.
One of the main objects of later investigations has been to extend
the limits of the arbitrariness allowable to a function which may
still be represented by a trigonometric series, but it is a somewhat
striking fact that the conditions do not yet include all continu-
ous functions, and Du Bois-Reymond has even proved that there
are continuous functions such that the trigonometric series which
represent them become infinite at certain points, that is, cease to
represent them at these points. The belief then that every con-
tinuous function can be represented by a trigonometric series is
unwarranted.

[ ~§ 15. The first published attempt to show that a function having
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an infinite number of maxima and minima may be represented by a
trigonometric series is that of Lipschitz in his memoir De explica-
tione per series trigonometricas, etc. (Crelle’s Journal, 1864,
vol. LXIIIL, p. 296). His proof depends on the evaluation of
the two integrals noticed as fundamental in Dirichlet’s method, and
he shows that these still maintain their validity if in the neighbour-
hood of those points B for which f{B) oscillates /(B +8) —A(B) is less
in absolute value than B&* where a is positive and B a constant.
As an extension of Dirichlet's conditions the result is important,
but it is to be observed that there may be continuous functions not
satisfying this condition. A 8) will be continuous near S if, given
an arbitrarily small quantity ¢, a value % can be found such that for
all values of & less numerically than %, mod.{f(8+8)-f(B)} is
less than e Lipschitz’s condition implies that e=or<BA%* or
h=or> t/(e/B), a relation not necessary for continuity. Again,
Lipschitz’s results would hold if 6L010g8 {f(B+8)-A1B)} =0 and

this is a form which Dini uses in his treatise Sopra la Serie di l
Fourier, and is less restrictive than the other.

§16. I now come to Riemann’s investigations as contained in
his great memoir Uber die Darstellbarkeit einer Function durch eine
trigonometrische Reihe. Though prepared for his Hubilitationschrift
in 1854, it was not published till after his death, appearing in
vol. XIII, of the Gittingen Abhandlungen, 1867 ; it is reprinted
in his collected works, pp. 218-253, with notes by Weber.

The memoir is divided into three main sections. The first
section, arts. 1-3, is historical and has been several times referred
to in the earlier part of this paper. The second, arts. 4-6, contains
a thorough investigation of the fundamental principles of definite
integrals, and in particular determines in what cases a function
has an integral. We see here the great extension of meaning
which the word function has gained in modern times, chiefly under
the guidance of Fourier, Dirichlet, and Riemann himself, and which
is essential to the modern function theory. The third section
completes the memoir and is devoted to the representation of a
function by a trigonometri¢ series without special suppositions as
to the nature of the function. The problem proposed for solution
is the following :—If a function can be represented by a trigono-
metric series, what follows respecting the march of the function,
respecting the change in its value for a continuous change in the
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argument? The preceding investigations argued from the function
to the series; here the series is supposed given and the conclusion
is to the nature of the function.

Riemann denotes the series A,+ A, + A, +etc. + A, +ete. where
Ay=1by, A, =a,sinnz+b,cosnx by 2, and when it is convergent its
value is denoted by Ax), so that Az) only exists for those values of
z for which the series is convergent. He first supposes £ to be such
that for every value of # A, becomes infinitely small when = becomes
infinitely great. If the series Q be integrated twice and the series
thus formed be denoted by F(x) so that

1

F(x)=C+Cz+}Apn’ - A, —etc. — — A, —ete.
7n

he shows that F(x) is convergent for every value of «, is continuous,
and is integrable. He then proves—

(I.) That when the series £ converges, the expression

(F(z+a+B) - F(@+a-B) - Fa-atP) + Fz-a-£)}/4af
converges to the value fla) when a and 8 become infinitely small,
but such that their ratio remains finite ;

(I1.) That {F(z+ 2a)+ F(x — 2a) - 2F(x)}/2a becomes infinitely
small with a; and

(II1.) That the integral ,u'z'r F(x)cosu(x — a)A(z)dz becomes in-
b

finitely small with 1/u, where b, ¢ denote two arbitrary constants
(¢>b), Mx) a function which with its first derivative is continuous
between b and ¢ and vanishes at the limits and whose second deriva-
tive has not an infinite number of maxima and minima.

By means of these theorems he proves that if a periodic function
J(z), of period 2w, can be represented by a trigonometric series whose
terms become ultimately indefinitely small there must exist a con-
tinuous function F(x) such that

{F@+a+pP)-Fx+a-pL)-F(x-a+p)+F(x-a-pL)}/4ap
converges to the value f{z) when «, B converge to zero, their ratio
remaining finite. Further, the integral of (III), subject to the
conditions there given, must become infinitely small with 1/u.

Conversely, when these conditions are satisfied, there exists a
trigonometric series whose terms become infinitely small and which

is such that, where it converges, it represents the function. For,
determining C’, A, so that F(x) — C'z — § A2* has the period 27, and
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then developing this function by the Fourier method the term
A, where

n2 L , o
A ;J' (F(0) - C't - A} cosn(x — t)dt
-

will become infinitely small with 1/n and therefore the series
Ag+ A, + A, +ete. will, whenever it converges, converge to f(x).
In Weber's note (Riemann’s Works, p. 252) the proof for this
assertion about A, is fully given.

Riemann then shows that the convergence of the series for a
definite value of x depends only on the behaviour of the function
in the neighbourhood of that value. A proof of this important
theorem, independent of Riemann’s general theorems and due to
Schwarz, is given by Sachse, pp. 89 et seq.

It will have been observed that as yet Riemann has given no
criterion for determining when the coefficients of the series Q will
in fact become infinitely small. In art. 10 he comes to this point,
and he there states that in many cases this question can not be
settled by consideration of their expression as definite integrals, but
must be determined in other ways. For the very important case in
which f{x) is integrable, finite throughout the range of the variable,
and (he should have added) has only a finite number of maxima and
minima, he proves that the coefficients do become infinitely small
and therefore that the series represents f{x) whenever it is
convergent.

In art. 11 he takes up the case in which the terms of 2 do not
become ultimately indefinitely small for every value of , and shows
that the series can converge only for those values of x which are
symmetrically placed with respect to those for which the integral

,u"“-: F(x)cosu(x — a)A(x)dx

does not become infinitely small with 1/u.

In art. 12 he considers the possibility of the function becoming
infinite, and gives as necessary and suflicient conditions that when
S) is infinite for x =a, ¢{fa+¢) and ¢f{a — ¢) become infinitely small
for t=0 and fla+t)+f(a—t) be integrable up to £=0, it being
understood that f(x) has not an infinite number of maxima and
minima. .

In the last article, art. 13, he deals with functions having an
infinite number of maxima and minima. In this connection he first
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shows hy an example that there may be integrable functions having
an infinite number of maxima and minima which are yet not
capable of representation by a Fourier series. He here takes

ﬂx)=dii(:c"cos.£_) where 0<v<}. He shows in the second place

by examples that there may be functions having.a finite number
of maxima and minima and not integrable which nevertheless may
be represented by a trigonometric series (on these examples, see a
paper by Genocchi, Atti della R. Acc. di Torino, vol. X., 1875,
Intorno ad alcune serie).

Riemann has thus given a very general solution of the problem
of representation of functions by trigonometric series and his
theorems (I), (II), (III), are of fundamental importance in the
subsequent investigations of Heine, Cantor, and Du Bois-Reymond.
But other methods than those he gives must in many cases be
resorted to to determine when the series is convergent, and as a
matter of fact, Dirichlet’s integrals seem indispensable for this

purpose.

§ 17. Hitherto I have said nothing of the contributions of
English writers to the theory of expansion in trigonometric series,
and I am sorry to add that the main reason for this is that their
contributions are so few. It is, I think, very unfortunate that
Poisson’s treatment of the Fourier series has become the basis of
nearly every investigation in our text-books, because, as has been
pointed out, that method is radically faulty. Dirichlet’s proof
seems to have been long unknown, for except in a note to a paper
of Stokes’s, to be mentioned presently, I do not remember to have
seen it even mentioned till the publication of Todhunter’s treatise
on Laplace’s Functions. In his Integral Calcwlus, Todhunter makes
no mention whatever of it, except in the reference to his treatise on
Laplace’s Functions, and even there it is only given as an alterna-
tive to the other. The reference he makes to Abel’s theorem on
p. 170 of the treatise is curious as it tacitly assumes the whole thing
to be proved, for it assumes that Z(2n + 1)u, is convergent.

De Morgan’s Calculus is often referred to for the demonstration
of the Fourier series, but while it is quite true that De Morgan gives
many helpful illustrations and examples like other English writers
(Donkin, in particular, in his Acoustics), it cannot be said that he has
advanced beyond Poisson. I do not understand how such a careful
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writer as De Morgan could have allowed some of the statements he
makes to pass. Thus (p, 607) he says 1+ cosf+cos20+......=3
in every case unless 6 =2rm when it is infinite, and he thinks
(p. 640) there is no reason to doubt that the infinite series
1-1+1—ete. (namely, the value of that series for =) represents
half a unit. This example might have been sufficient to show the
uncertainty of reasoning from the convergence of Za"u, to that
of Zu,.

§ 18. Hamilton in his great memoir On Fluctuating Functions
(T'rans. R.I.A., vol, XIX., 1842) has much that bears on the subject
of periodic series but no set proof of the Fourier series itself. His
integrals, however, include the integrals of Dirichlet as particular
cases, and the paper deserves more careful study than it usually
receives. A good restatement of Hamilton’s principal results in
regard to these integrals will be found in Neumann’s treatise,
Uber die mach Kreis-Kugel-und Cylinder—Functionen Jortsch.
Entwickelungen, which contains a good statement of the Fourier
series and integrals for the case of verniinftige Functionen.

Stokes’s memoir On the Critical Values of the Sums of Periodic
Series (Camb. Phil. T'rans., 1847, vol. VIIL, p. 533, reprinted in
Collected Works, vol. 1., p. 236) is important in the history of series,
for he there (section IIL.) draws attention to what has since been
called the uniform convergence of series, though this honour is
usually attributed to Seidel, whose paper (evidently quite indepen-

dent of Stokes’s) did not appear till 1848. Tn the first section
~ Stokes discusses the expansion of a function in a series of sines and
also in a series of cosines, and adopts the method of Poisson as that
which he employed when he first began the investigations and which
best harmonised with the rest of the paper. He points out, however,
in a note to page 251 (Coll. Works) that had he heen aware of
Dirichlet’s memoir in Crelle and of Hamilton’s paper at an earlier
stage of his work he would probably have adopted the method of
summing the first n terms of the series and then considering the
limit of n infinite. The investigation as carried out is a little
tedious but it forms a great advance on the way in which Poisson’s
mode of treating the subject is usually conducted. There are many
things in the paper which make it still valuable, but as it is so casily
accessible I need do no more than refer to it.

The investigation given by Thomson and Tait in their Zreatise
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on Natural Philosophy, vol. 1., pt. I., pp. 55-60 has much in common
with Poisson’s proof and also with Cauchy’s. It will be noticed that
in passing from their equation (11) to equation (12) the continuity
of the series up to and including the value ¢=1 is assumed. But
as has been repeatedly stated this assumption is only legitimate if
the convergence of the series for ¢=1 is otherwise known, so that
the same objection applies here as in Poisson’s own proof. In
general the convergence of the series is only comparable with that
whose general term is A/n, and this result does not carry us far in
determining the convergence. The remark on p. 59 that “if exactly
the critical value is assigned to the independent variable, the series
cannot converge to any definite value” is an ex cathedra statement
which Dirichlet’s proof shows to be quite incorrect.

§ 19. The course of the history of the Fourier series now takes a
new departure. In the preceding work it has been seen that under
certain circumstances the series will converge to the value of the
function, but in more recent times it has been recognised that mere
convergence is not sufficient for most of the applications for which
the series is needed ; the convergence must be uniformn. Suppose,
for instance, that we have for f(z) the series

S(x)=13a,+ "?(a,,cosnx + b,sinnx)
n=1

. B
and we wish to evaluate j JS(x)¢(x)dz by means of the series ; then
a
we can only safely assert the equation
8 A A .
J ) (w)dz = 5aoj S(a)dz + EJ (a,c08nz + b,sinnz)(x)d
a a a

if the series be uniformly convergent. Unless then the series is to
be shorn of much of its value its uniform convergence must be
established.

Another difficulty that this conception of uniform convergency
raises is that the old proof for the uniqueness of the expansion
becomes invalid, as resting upon an integration the legitimacy of
which is not proved.

§ 20. The first to call attention to the points just mentioned was
Heine in a paper contributed to Crelle’s Journal vol. LXXI. (1870)
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p. 353, Uber trigonometrische Reihen. In § 2 he gives the definition
of uniform convergence, and it is interesting to note as illustrative
of the immense influence of Weierstrass, in spite of his comparatively
few published papers, that Heine’s attention seems to have been first
directed to the matter of uniform convergence by Weierstrass or one
of his pupils rather than by the writings of Seidel or Stokes. (As
regards Stokes, Reiff in his Geschichte (p. 207) seems to have been
the first to give him due credit in this connection.) He shows that
the Fourier series can not converge uniformly in the neighbourhood
of a point at which the function is dlscontmuous, and establishes the
following theorems : —

(1) The Fourier series for a finite function f(x) with a finite
number of maxima and minima converges uniformly if f(x) be
continuous for —7r=or<xz=or<= and f{~7)=f(w); in all other
cases it is only uniformly convergent in general, that is, it converges
uniformly for every interval which does not include a point of
discontinuity, these points being snpposed finite in number.
The points +7 are to be considered points of discontinuity if
S(—7)+A).

(2) If a trigonometric series is in general uniformly convergent,
and is in general equal to zero ( — 7 =or<x=or<w) then will every
co-efficient be zero. For the proof of this theorem he falls back on
Riemann’s proposition regarding L{F(r +a)+ F(z - a) - 2F(z)}/a =

a—
The proof of theorem (1) follows the lines of Dirichlet’s proof, and
is reproduced in greater detail in his Augelfunctionen, vol. I,
pp. 53 et seq.

§ 21. Heine’s second theorem shows that there cannot be two
different expansions of a function if these are to be (in general)
uniformly convergent. Cantor has proved the more general theorem
that even if uniform convergence be not demanded there can be but
one convergent expansion in a trigonometric series and it is that of
Fourier. Cantor’s memoirs appear in Crelle’s Journal, vol. LXXII.,
p. 130, Uber einen . . . Lehrsatz and p. 139 Beweis dass eine fiir
jeden reelen Werth, etc., vol. LXXIII, p. 294, Notiz zv, dem Aufsatze :
Bewers, etc, In the first of these he proves that if two infinite series,
ay, ay, etc., by, b, ete, are such that L (a,sinna + b,cosnx) =0 where

n=x

z is real and lies in a given interval a, b, then La,=0, Lb,=0 for
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n=ow. In the second memoir he takes the function F(z) of
Riemann, the conditions imposed on it being shown, by the pro-
position just stated, to be satisfied and forms the quotient
{F(x+a) - 2F(x)+ F(x ~ a)}/a®. This quotient is zero for a=0
and F(x) is continuous; and it now follows by a theorem due to
Schwarz that F(xz) must be a linear function of . (Of course, if
F(x) be supposed to have continuous first and second derivatives,
this theorem is evident). Giving to F(x) a linear value and adopting
the notation of Riemann, we have

JA@?+ O+ Cy= A, + 1A, + ..., +;1__A,,+ ......

The right hand member being periodic, it follows that Ayj=0=C,
and then by multiplying by sinnx or cosnz and integrating between
—m and 7 (a process now allowable) it is seen that ¢,=0=0, for
every value of n. Hence a convergent trigonometric series can
represent zero only if every coefficient is zero, from which the unique-
ness of the trigonometric expansion at once follows.

In the third memoir quoted above he gives a simplified form of
the proof, due to Kronecker, which dispenses with the necessity of
the investigation of the first memoir. In an article, Uber die
Ausdehnung eines Sutzes, etc., Math. Ann., vol. V., Cantor extended
his theorem to functions having an infinite number of discontinuities,
provided these be distributed in a particular way, but, unfortunately,
I have not had access to this article.

§ 22. Du Bois-Reymond’s name has occurred more than once
incidentally in this paper, and one memoir of his has now to be
briefly noticed. His contributions to the theory of series in general
and of the Fourier series in particular have been both numerous and
important, but I can hardly do more than give a brief notice of one
memoir and a statement of some interesting results of a second.
These two memoirs are very important, and they contain notices of
the work of predecessors and full references to his own papers
bearing on the subject; but a detailed analysis would carry me far
beyond the limits of this paper.

The first of these two memoirs appears in the Abhandlungen
der Bayerischen Academsie, vol. XII1. (1875) p. 117, Beweis duss die
Coeff. der trig. Reihe, etc. He there proves that the coefficients of

p=>
the series flx)= X (a,cospx+ b,sinpx) have the values
p=0
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1~ 1(” 1(~ .
ay= 2—"_J‘—rdaﬂa), a,= ;J-—tdaf(a)cospa, bp=?-“ Tdaf(a)smpa,

whenever these integrals are finite and determinate. This proposi-
tion includes of course the theorem that f(x) can be expanded in
only one way in a Fourier series. In the proof Riemann’s theorems
(I.) and (II) and Schwarz’'s theorem, quoted above, play an
important part Putting

: nmw 1 '
F(x)=lapn®- 2 ?(apcosp:c + b,sinpx) ... ... (1),
n=1

and supposing, in the first place, f(x) to be continuous, he seeks to
express F(z) by f(x). For every value of « between —r and 7

£ J ;daj;dﬁ.fw) = f(@).

. x a
It ‘i‘—'(x)=F(x)—J daj dBf(B) it follows. that L A%F/d—0
-7 - €=

where A*® =®(x +¢) — 2®(x) + P(x —¢), and therefore P(x)=c, +cx
x a .

and F(z)= J daj dBf(B) + ¢y + cx = Fy(x) + ¢ + ¢,y suppose, (2).
-7 -r

Multiplying (1) by cosnz, sinnx respectively and integrating between
-7 and 7 we get

L 2r T L s
L. F(a)cosnada = (- 1)" 250, ~ Ta, J-, F(a)da =T a3

g . T
'[ F(a)sinnada = "',?b"'
-
Replacing F(z) by its value given by (2), integrating by parts and
‘l' L
noticing that a,, b, da f(a)cosna, J- da f(a)sinna vanish with
-r

-7

1/n he finds

gz dar @G- (e} o= 5[ daree-o)

= — | d a, b =— l d(lf a)sinnae
— — = 1N72
ao = I d af(a), a,, af(a)cosn n ( )
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Du Bois-Reymond now, instead of supposing f(x) to have
discontinuities, proceeds to consider the case where f(x) is sup-
posed only to be integrable. In this case LOA’<1>/e2 is not, or at

€=
least is not provable to be, generally zero. He proves, however,
that it follows from the integrability of f(z) that ®(x) is a linear
function of z, but the proof is too long and complicated to be
reproduced here. ~ When once this point is established the
reasoning is as before. He then considers the possibility of f'(x)
having infinite values.

In the same volume of the Bayerischen Abhandlungen, Zweite
Abtheilung, pp. 1-102, Du Bois-Reymond has a long article entitled
Untersuchungen iiber die Convergenz und Divergenz der Fourierschen
Darstellungs-Formeln. The memoir forms rather laborious reading,
but is, nevertheless, a very important contribution to the theory of
the Fourier series. It is specially valuable on account of the

sinka

b
thorough discussion of the Dirichlet integral hLI da f(a) ol
==J o
By considering special forms of f(a) he succeeds in showing that -
there do exist continuous functions of « such that for special values
of 2 the Fourier series does not converge. In the last chapter of his
essay Sachse gives an example, due to Schwarz, of such a function ;
the example is included in Du Bois-Reymond’s more general ones,
but is simpler both in definition and in proof. In the Comyptes
Rendus, vol. XCIIL, p. 915 and p. 962, will be found a short
statement by Du Bois-Reymond himself of his investigations on

b
integrals of the form ,,:E' I S (@)p(z, k)dx.

§ 23. The memoirs of Du Bois-Reymond may be said in a sense
to include all the results of previous writers and to push the inquiry
as to the nature of the functions which can be represented by a
Fourier series when the co-efficients are determined as definite
integrals very near its utmost limits. In what follows I will
therefore refer chiefly to certain investigations on the Dirichlet
integral, and to some articles which bear on the integrals and which
tend to simplify proofs and to clear up one or two doubtful points,
But before doing so I would specially recommend to any one who
wishes to have in a compact form a thorough and rigorous treat-
ment of the Fourier series in all its bearings the treatise by Ulisse
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Dini, entitled Serie di Fourier ¢ altre Rappresentazioni analitiche
delle Funzioni di una Variabile Reale (Pisa, 1880). As the title
indicates, the book contains much more than the Fourier series
proper, and the whole treatment is carried through on a uniform
plan and with scrupulous accuracy of statement. A careful reading
of it is quite an education in some of the most delicate points of the
integral calculus and of the theory of functions.

In the appendix to the second volume of his Augelfunctionen
“(Berlin, 1881) Heine returns to the discussion of the Fourier series,
and shows how, by a certain procedure, great simplification may be
introduced into the mode of presenting Dirichlet’s proof, which is
apt to become rather tedious from the great number of ditferent
cases that have to be considered. In particular, the simplification
affects the consideration of the uniform convergence of the series,
and throws light on certain difficulties raised by Schlafli.

In some respects Heine’s treatment in this appendix resembles
that suggested by Jordan in a paper Sur la Série de Fourier
(Comptes Rendus, 1881, vol. XCIIL,, p. 228); for the decomposition
of the function, as proposed by Heine, into the sum of functions
which are either not increasing or not decreasing, secures the same
end as Jordan obtains by his conception of fonctwns a oscillation
limitée. In his Cours &’ Analyse, vol. II. (first edition) Jordan
systematically uses the fonction a oscillation (variation) limitée in
discussing the integrals of Dirichlet and Du Bois-Reymond, and
thus simplifies the treatment considerably. In the paper just
mentioned he gives a new condition for F(x), such that

sinpzx

L F() L do= 2 F(0)

is still true.
. Conditions including that of Jordan are developed in an article
by O. Holder, diber eine neue Bedingung, etc. (Berliner Berichte,
1885, p. 419)

In the Berliner Berichte for the same year (p. 641) Kroneckey
has a memoir Uber die Dirichletsche Integral, which is particularly
noteworthy because of the variety of forms to which he reduces the

f (0)-

These conditions include those of Dirichlet, prschxtz, Jordan, and
Holder. Kronecker thinks the variety of the results is due to his

smna,

conditions for the validity of the equa.tlon L I S (x)
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method of putting f(x)=f(x)+/(0) so that f(x) vanishes with x
and using fy(x) in the integral.

I cannot conclude without calling attention to a remarkable
memoir by Weierstrass, Uber die analytische Darstellbarkeit soge-
nannter willkiirlicher Functionen einer reellen Veranderlichen
(Berliner Ber., 1885, p. 633 and p. 789). He there proves the
remarkable theorem that if f(x) be a single-valued, continuous, and
periodic function (x real), then, given an arbitrarily small positive
magnitude g, a finite Fourier series can be formed in a variety of -
ways which is such that the difference between it and the function
f(x) does not exceed g for any value of x. Further, every such
function f(x) (period =2c) may be represented as a sum whose
terms are finite Fourier series with the period 2c. This series
converges absolutely for every value of x and uniformly in each
finite interval.

In the Comptes Rendus for 1891, (vol. CXII., p. 183) Picard
has proved the first theorem by using Poisson’s integral. (Sur la
représentation approchée des fonctions). '

In the foregoing paper there are some points in connection with
the Fourier series which I have not touched upon, and in particular .
the differentiability of the series. I have also avoided all reference
to series other than the Fourier series strictly so called. To have
taken up these points would have added considerably to the length
of the paper, already perhaps too long. I would fain hope that no
important contribution to the theory of the Fourier series has been
altogether passed over, and that the paper may prove useful in
directing attention to a most interesting side of mathematical
theory.
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Eighth Meeting, June 9, 1893.

JouN AvisoN, Esq., M.A,; F.R.S.E,, President, in the Chair.

Japanese Arithmetic.
By Prof. C. G. Knotr, D.Sc., F.R.S.E.

The paper was mainly an account of the abacus, as used in
China and Japan. The instrument was shown, and the various
operations of addition, subtraction, multiplication, division, and
extraction of square and cube roots, were illustrated. The multi-
plication and division tables were fully described, the latter being
especially interesting. The historic development of the abacus in
the East was also touched upon. A full account of the Chinese
and Japanese abacus will be found in a paper by the author,
entitled, “The Abacus, in its Historic and Scientific Aspects,”
published in the Transactions of the Asiatic Society of Japan
(vol. XIV., 1886). A copy of this paper is in the library of the
Edinburgh Mathematical Society.

Revue Semestrielle des Publications Mathématiques:
Rédigée sous les Auspices de la Société Mathématique d’ Amsterdam.

Tome I. (Premiére Partie) : Amsterdam, W. Versluys, 1893, pp. 104.

The appearance of this Review is a significant indication of the
enormous development of mathematical studies in recent years.
Nearly every one who has attempted -to keep himself abreast of
mathematical research has been obliged sooner or later to recognise
the practical impossibility of mastering the literature of every
branch, and has resigned himself to a comparatively elementary
study of the general subject while devoting his main energies to
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special departments. Even then, so numerous are the Societies
that publish Proceedings and Transactions, and so varied are the
Journals that are chiefly mathematical in their content, that it is
no easy matter for the mathematician to get a knowledge of what
is being done in any special field by workers outside (sometimes in)
his own country. The need for a publication that will, without
undue delay, furnish a conspectus of the literature of the subject
is thus a very real one. That the need has been felt is sufficiently
shown by the synopses of the contents of other Journals, given in
such publications as Darboux’s Bulletin, and more especially by the
excellent Jakrbuch tiber die Fortschritte der Mathematik. The last
completed issue of the Jakrbuch, that for 1889, extends to upwards
of 1300 pages, while that for 1890, two parts of which have appeared,
will evidently be as large. Itis almost inevitable that a work of this
magnitude should be a little late in appearing, and it is possibly
in view of this fact that the Mathematical Society of Amsterdam
lay stress on their intention to issue their notices of the various
Journals “ without any delay of importance ” The first part of the
first volume, a copy of which has been sent to our Society, contains
a statement of the principles on which the Review is to be conducted,
and it may be of interest to the members of the Society to have
these presented in outline.

The object of the Review is to facilitate the study of the
mathematical sciences by making known, without any delay of
importance, the title and the principal contents of the mathematical
memoirs published in the principal scientific Journals, and it is
issued under the editorship of Messrs Schoute, Korteweg, Kapteyn,
Kluyver, and Zeeman, who are assisted by a pretty large staff of
contributors. In general, notices are to be given of memoirs on
pure mathematics and mechanics, including hydrodynamics and
the theory of elasticity, but excluding applied mechanics, mathe-
matical physics, and astronomy. This selection seems to me a
somewhat arbitrary one, but it may perhaps prove better in
practice than the statement of it would suggest, since it is proposed
to give the titles and the classification of memoirs on excluded
subjects when thesec appear in Journals which are almost ex-
clusively mathematical. All the same, it is not easy to understand
why the line should be drawn at the theory of elasticity, which
certainly offers no problems of greater mathematical interest than,
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for example, does the mathematical theory of electricity or even
that of the conduction of heat.

As regards the notices of the memoirs the guiding principle
is the following:— The title of the memoir will be preceded by
one or more letters (notations) in accordance with the system of
classification adopted by the International Congress on the Biblio-
graphy of the Mathematical Sciences; this will be followed by a
very short abstract of the contents of the memoir, but in cases
where the title and the letters of classification indicate sufficiently
the contents of the paper no abstract will be added. The use of
symbols of classification has many advantages and in large numbers
of instances gives about as much information as a short abstract
would do. Any one who has had experience in summarising mathe-
matical papers knows the extreme difficulty, one might say the
impossibility, of compressing into a few lines the substance of a
really good article, and it is quite clear that in several instances
the writers of the abstracts have felt themselves cramped in dealing
with the important memoirs. The value of the Review, it seems to
me, will be chiefly in the exhaustive list of titles of papers and in
the system of classification adopted; the abstracts are in many
instances admirably done, but even then do not furnish very much
more information than the title and classification convey.

If the Society succeed in their intention of publishing the two
parts which make up the annual volume at the times they propose,
the Review should have a useful career before it; these are to appear
on the first of January and the first of July respectively. The first
part will contain an analysis of all works published between first
March and first October of the preceding year, while the second
will deal with those published between the latter date and the first
March of the current year. It should be possible, I think, to keep
to the dates proposed; any postponement would probably prove
fatal to the success of the venture.*

It would seem that notices of text-books and independent works
do not come within the scope of the Review. It would, I think, be

* I note, with pleasure, that the Second Part of Vol I. has appeared at the
promised date,
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a valuable addition to have even the titles of the more important
mathematical books that are annually published; they are often a
considerable time in making their way outside the country that
produces them.

The Review should prove very useful to all engaged in mathe-
matical work. To every mathematician—and does any one deserve
the name of mathematician who does not spend some portion of
his leisure in reading original memoirs—this Review makes its
appeal.

GEORGE A. GIBSON.
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The Geometrography of Euclid’s Problems.
By J. S. Macray, M.A., LL.D.

The term Geometrography is new to mathematical science, and
it may be defined, in the words of its inventor, as ‘“the art of
geometrical constructions.”

Certain constructions are, it is well known, simpler than certain
others, but in many cases the simplicity of a construction does not
consist in the practical execution, but in the brevity of the state-
ment, of what has to be done. Can then any criterion be laid down
by which an estimate may be formed of the relative simplicity of
several different constructions for attaining the same end ?

This is the question which Mr Emile Lemoine put to bimself
some years ago, and which he very ingeniously answered in a
memoir read at the Oran meeting (1888) of the French Association
for the Advancement of the Sciences. Mr Lemoine has since
returned to the subject, and his maturer views will be found in
another memoir read at the Pau meeting (1892) of the same
Association. The object of the present paper is to give an account
of Mr Lemoine’s method of estimation, to suggest a slight modifica-
tion of it, and to apply it to the problems contained in the first six
books of Euclid’s Elements.

In the first place Mr Lemoine restricts himself, as Euclid does,
to constructions executed with the ruler and the compasses, and these
he divides into the following elementary operations: '

To place the edge of the ruler in coincidence with
8 POINt woinvritiiniiiiiiii e, R,
To draw a straight line ..................coooaie R,

To put a point of the compasses on a determinate
POINt .ooiiiiii C,

To put a point of the compasses on an indeter-
minate point of a line ................ol C,

To describe a circle ........c.c.coo covvviiiieineiiinnnnnes C,;
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No account is taken of the length of the lines that are described ;
if any portion of a straight line be drawn the operation is R,, if a
small arc only or the whole circumference be described, the operation
is C,.

It ought also to be added that to place the edge of the ruler in
coincidence with two points is 2R,; to put one point of the com-
passes on a determinate point and the other point of the compasses
on another determinate point is 2C,.

Every construction therefore is finally represented by

LR, + LR, + m,C; +myCy +m,Cy

where /,, m,, etc., are coefficients denoting the number of times any
particular operation is performed. .

The number (I, +1,+m,+m,+m;) is called the coefficient of
simplicity, or more shortly, the simplicity of the construction ; it
denotes the total number of operations. The number [, +m, +m, is
called the cogfficient of exactitude, or more shortly, the exactitude of
the construction™® ; it denotes the number of preparatory operations,
on which and not on the tracing operations, the exactitude of the
construction depends. The number of straight lines drawn is /,;
the number of circles m;.

An objection at once presents 1tself to the reader, as it did to Mr
Lemoine. Is it legitimate to suppose the operations R,, R., C,, C,, C,
identical in value, in order to make up the coefficient of simplicity
or exactitude? They are evidently not identical in execution, and
hence Geometrography does not furnish us with an absolute measure
of simplicity or exactitude in the sense in which measure is usually
employed, the comparison of one magnitude with a unit of the same
kind. The various operations however are assimilated because they
are incapable of decomposition into others more simple, and because,
‘speculatively, any one is neither more simple nor less simple than
another.

In one case it may be said that Geometrography does furnish an
absolute measure, the case namely when all the coefficients in one
construction are smaller than the respective coefficients in the other.
This case occurs pretty frequently.

# Mr Lemoine remarks that the simplicity and the exactitude of an operation
vary inversely as the numbers he sums; but since no confusion is possible, he
prefers names recalling the object aimed at to the more logical terms cocfficient of

complication and coefficient of inexactitude.
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Such is Mr Lemoine’s scheme of comparison, which he applies to
more than sixty of the principal problems of elementary geometry,
with some very unexpected results.

To justify his procedure in denoting by 2R, and 2C, the opera-
tions of placing the edge of the ruler and the two points of the com-
passes in coincidence with two given points, Mr Lemoine says in a
note on the problem

To take with the compasses a given length AB :

Tt is clear that the operation of putting the first point of the
compasses on A is not the same as that of keeping the first point
on A and placing the second on B; and yet we denote them both
by C,. We believe that there is no inconvenience in that, because
we are only making an ideal theory of operations. Thus we suppose
that all the lines of the figure intersect within the limits of the
drawing, that it is indifferent whether these lines intersect at a very
acute angle, and so on ; so that it appears to us quite sufficient to
denote by the symbol C, the general operation which consists in
putting one of the points of the compasses on one point. The
reader however who, after reflection, does not share our opinion has
only to denote by C,’ the operation which consists in putting on a
given point the movable point of the compasses while the other is
kept fixed.

¢ In like manner, since we call R, the operation which consists
in putting the edge of the ruler in contact with a point, it is evident
from the manner in which it is performed that the operation which
consists in putting the edge of the ruler in coincidence with two
given points is not exactly twice the operation R,. One might also
denote by R,+ R, the operation which consists in placing the edge .
of the ruler in contact with two points; but if one practises
Geometrography a little I believe he will come to recognise that this
distinction is a useless complication.

“We might also have assimilated the operations C, and C, and
have kept for the two only one symbol C,; but we have not done
so, because if theoretically R, and R’ come to the same thing, C,
and C, are theoretically different. C, however occurs much more
rarely than the other symbols, and in general with a very small co-
efficient.”

‘ I am not sure that I understand in what respect the practical
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operations C, and C, are theoretically different, unless it be that in
performing C, there is one degree more of freedom than in perform-
ing C,. But this is so also in the case of the two operations denoted
by 2R, ; for the ruler can be placed in coincidence with one point
by a motion either of translation or of rotation or of both, while it
can be placed in coincidence with the other point, the coincidence
with the first being maintained, only by rotation.

In the case of the two operations denoted by 2C, it is clear also
that there is less freedom in placing the second point of the com-
passes than there is in placing the first, and hence if, for the sake of
convenience, two operations which are not precisely identical may
be denoted by the reduplication of the same symbol, there does not
seem to be any imperative reason why the operations ‘C, and C,
should not be regarded as equivalent. The fact also that in esti-
mating the simplicity and exactitude of constructions the symbol C,
rarely occurs, and the manifest advantage of having only four units
instead of five have induced me to propose the following modification
of Mr Lemoine’s scheme :

To place the edge of the ruler in coincidence with

0ne POINt ......o.oeiiiiiiiiiiii e R,
To place the edge of the ruler in coincidence with

EWO POINLS...cvniieiiiniiiiiiiii e 2R,
To draw a straight line ...................o R,
To put one point of the compasses on a determinate

POINE .ovviiiniiiii e . G
To put the points of the compasses on two deter-
" minate PoInts ..........cc.eviiiiiiiiiiiiiiie, 2C,
To describe a circle ...........cccvvevninnnnnn Cereresaraans C,

On another matter (of small importance) I have ventured to
differ from Mr Lemoine.

GQiven A, B, C, the three vertices of a triangle, to comstruct the
triangle.

Mr Lemoine estimates this operation as 6R,+3R, I have
estimated it as 4R,+3R, To put the ruler in contact with
A, B is 2R,; todraw AB is R, Now as the ruler is in contact
with B, I estimate the putting of it in contact with B and C as
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only an additional R,; to draw BC is R,. Again as the ruler is
in contact with C, I estimate the putting of it in contact with C
and A as another R,; to draw CA is R,—in all, 4R, +3R,.

The following remarks are extracted from one of Mr Lemoine’s
letters :

Geometrography may be divided into several branches.
(1) That of the canonical geometry of the straight line and the

circle, the only instruments being the ruler and the com-
passes.

(2) Add the carpenter’s square, with two new symbols. This
branch may be applied especially to descriptive geometry.

(3) Add graduated rulers, for application to graphical statics.
(4) The geometrography of the ruler alone.
(5) The geometrography of the compasses alone.*

A sub-section may be made of the geometrography of the ruler
and one single opening of the compasses. }

In what follows, the notation I. 1, etc., denotes Euclid’s
Elements, Book First, Proposition First, etc. It will be seen that,
except in the fourth book, Euclid does not group his problems

together.
I 1.

To describe an equilateral triangle on a given finite straight line.
3R, + 2R, +3C, +2C,
Simplicity 10 ; exactitude 6 ; lines 2 ; circles 2.
I2

From a given point to draw a straight line equal to a given
straight line.

5R, +3R,+7C, +4C,
The problem may be solved with much less complication, namely,
R,+R,+3C, +C,
' I 3.
From the greater of two given straight lines to cut off a bart
equal to the less.
NG 5R, + 3R, +9C, + 5C,

* See Mascheroni’s Geometria del compasso (1795).
+ See Proceedings of the Edinburgh Mathematical Soctety, V. 2-22 (1887).
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The problem may be solved with much less complication, namely,
3C,+C,

I.9.
To bisect a given rectilineal angle.
2R, +R, +4C, + 3C,
In this estimate the operations for drawing the sides of the

equilateral triangle which occurs in Euclid’s construction are
omitted. The construction may be effected by

2R, + R, +3C, + 3C,.

1. 10.
To bisect a given finite straight line
_ 2R, + R, +3C, + 2C..
Some of Euclid’s operations are not counted, as they are needed
only for the demonstration. The construction may be effected by

2R, + R, +2C, +2C,

I 11.

To draw a straight line perpendicular to a given straight line
Jrom a given point in the same.

2R, + R, +4C, + 3C,
The construction may be effected by
2R, +R,+3C, +3C,

Or thus:

Ficure 1.

Let AB be the straight line, C the point in it,

Take any point D outsidle AB; with D as centre and DC as
radius describe a circle cutting AB again at E.
Join ED, and produce it to meet the circle at F'; join FC.

3R, +2R,;+C,+C,

I. 12.

To draw a straight line perpendicular to a given straight line
Sfrom a given point outside .
2R, +R;+5C, + 3C,
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From the way in which Euclid describes his construction, the
formula for it would be
4R, + 2R, + 5C, + 3C,

But if the construction be fully carried out it will be seen that the
drawing of the final straight line is unnecessary. Hence the formula
is as first stated.

The construction may be effected by

2R, + R, +3C, + 3C,
Or thus:

FiGure 2.

Let AB be the straight line, C the point outside it.

Take any point D in AB; with D as centre and DC as radius
describe a circle cutting AB at E.
With E as centre and EC as radius describe a circle cutting the
previous one again at F; join FC.

2R, + R, +4C, +2C,

I 22.
To make a triangle the sides of which shall be equal to three given
straight lines.

Euclid does not use any of the given straight lines as a side of
the triangle.
3R, + 3R, +9C, +4C,

I. 23.

At a given point in a given straight line to make an angle equal
to a given angle.
2R, + R, +9C, + 3C,

The construction may be effected by
2R, + R, +5C, +3C,

I. 31..

Through a given point to draw a straight line parallel to a given
straight line.
3R, +2R,+9C, +3C,
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The construction is frequently effected by
2R, + R, +5C, + 3C,
The following method is due to Mr Gaston Tarry.

Ficure 3.

Let A be the given point, BC the given straight line.

Draw any circle passing through A and cutting BC at D and
E. With E as centre and radius AD describe a circle to cut the
previous one at F. Join AF.

2R, +R,+4C, +2C,

I. 42.
To describe a parallelogram that shall be equal to a given triangle
and have one of its angles equal to a given angle.

Euclid constructs his parallelogram on the half of one of the
sides of the triangle,

10R, + 6R, + 30C, + 11C,
The construction may be effected by
8R, +4R,+15C, +9C,

I. 44.

To a given straight line to apply a parallelogram which shall be
equal to a given triangle and have one of its angles equal to a given
angle.

28R, + 17R, + 81C, + 28C,
I. 45.

To describe a parallelogram equal to a given rectilineal figure and
having an angle equal to a given angle.
Euclid takes a quadrilateral for the given rectilineal figure.

40R, +24R,+111C, + 39C,

1. 46.
To describe a square on a given straight line.
10R, + 6R, + 240, + 10C,
The construction may be effected by
6R, + 3R, +7C, +5C,
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IT. 11.

To divide a given straight line in medial section.
6R, +3R,+12C,+7C,

I have left out several of Euclid’s operations, as they are neces-
sary only for the demonstration.

If the given straight line AB be denoted by 2, the greater
segment of it will be denoted by /5 — 1. Hence to obtain the
required section of AB, a geometrical construction for /5 must
be found. This geometrical construction can be found from a right-
angled triangle whose sides containing the right angle are 2 and 1
(Euclid’s method). It may also be found from a right-angled triangle
whose hypotenuse is 3 and one of its sides 2.

The following method (which in substance has been long known)
depends upon the second construction for /5, and was communi-
cated to me by Mr Lemoine, to whom it had been sent by Mr
Bernés. Mr Bernés remarked that he would probably not have -
discovered it without the aid of Geometrography, or that if he had,
he would have attached no special importance to it. And yet it is
the simplest of all the solutions yet discovered.

Ficure 4.

Produce BA, the given straight line.
With centre A and radius AB describe a circle cutting BA pro-
duced at C. With centre C and the same radius describe a circle
cutting the previous circle in D, D'.
Join DDV, cutting AC in E.
With centre E and radius AB cut DD’ in F. With centre F and
radius EB describe a circle cutting BA in G, and BA produced
in G'. These are the required points of internal and external
section.

4R, + 2R, +7C, +4C,

For other solutions see the Proceedings of the Edinburgh Mathe-
matical Society, IV. 60 (1886), and Mr Lemoine’s memoir of 1892,
already cited.

II. 14.

To describe a square equal to a given rectilineal figure.
Euclid describes a rectangle equal to the given rectilineal figure,
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which can be done by the extremely complicated construction of
I. 45; and then finds the side of a square equal to the rectangle.
This latter process he performs by

6R, + 3R, +7C, + 4C,

IIT1. 1.
To find the centre of a given circle.
4R, + 3R, + 6C, + 4C..

The following solution, due to J. H. Swale of Liverpool (1830),
is probably the simplest yet discovered.

FIGuURE 5.

Take any point P on the given circumference, and with P as
centre describe a circle ABC cutting the given circle at A and B.
In this circle place the chord BC equal to BP; and join AC
cutting the given circumference in D. Then BD or CD is the
radius of the given circle. '

2R, + R, +5C, +4C,

III. 17,
To draw a tangent to a circle from an external point.
Euclid begins by finding the centre of the circle. I shall suppose
the centre to be given.
8R,+4R,+6C, +4C,
To draw the two tangents, there would be required

10R, +6R, + 6C, + 4C,

A common solution is to join the external point to the centre of
the circle, and on this line as diameter to describe a circle. This,
giving the two tangents, is effected by

7R, + 4R, +4C, +3C,
If the ruler alone is used, the two tangents can be obtained by

14R, + 10R,

III. 25.

A segment of a circle being given, to describe the circle of which it

18 the segment.
6R, + 3R, +14C, +6C,
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The construction can be effected by
5R,+ 3R, +6C, +5C,

IIT. 30.
To bisect a given arc of a circle.
4R, + 2R, +3C, + 2C,

The construction may be effected by
2R, + R, + 20, +2C,

III. 33.

On a given straight line to describe a segment of a circle containing
an angle equal to a given angle.

6R,+ 3R, +18C, +9C,

The construction may be effected by
4R, +2R,+11C, +6C,

III. 34.

From a given circle to cut off a segment containing an angle equal
to a given angle.
I shall suppose the centre of the given circle to be known.

6R, + 3R, +13C, + 6C,

The construction may be effected by
4R, + 2R, + 8C, + 4C,

IV. 1. >
In a given circle to place a chord of given length.
3R, +2R;+30,+C,"

The construction may be effected by
2R, +R,+3C, +C,

IV. 2.

In a given circle to inscribe a triangle equiangular to a given
triangle.
I shall suppose the centre of the circle to be known.

10R, + 4R, + 22C, + 9C,
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The construction may be effected by
IR, +5R, +10C, + 6C,

IV. 3.

About a given circle to circumseribe a triangle equiangular to a
gwen triangle.
14R, + TR, + 30C, + 15C,

The construction may be effected by
10R, + 7R, +12C, + 8C,

IV. 4.
To inscribe a circle in a given triangle.
6R, + 3R, +14C, +10C,
The construction may be effected by
4R, + 2R, +11C, +6C,

Iv. 5.
To circumscribe a circle about a given triangle.
4R, + 2R, +8C, + 5C,
The construction may be effected by
4R, + 2R, +5C, +4C,

IV. 6.
To inscribe a square in a given circle.
8R, +6R,+3C, +2C,

IV. 7.
To circumscribe a square about a given circle.
11R, + 6R, +19C, + 14C,

IV. 8.
To inscribe a circle in a given square.

10R, + 6R, + 26C, +11C,
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1v. 9.
To circumscribe a circle about a given square.

4R, +2R,+2C, +C,

IV. 10.

To describe an isosceles triangle having each of the base angles
double of the vertical angle.

9R, +6R,+17C, +9C,

IV. 11.
To inscribe a regular pentagon in a given circle.
28R, + 16R, + 47C, + 24C,

The following construction, given in the first book of Ptolemy’s
Almagest, is much simpler than Euclid’s.

FIGURE 6.

Draw AB any diameter of the given circle. From the centre
C draw CD perpendicular to AB and meeting the circumference
at D. Bisect AC at E; and from EB cut off EF equal to ED.
Then DF is a side of the inscribed regular pentagon.

11R, + 8R,+11C, + 9C,
IV. 12
T'o circumscribe a regular pentagon about a given circle.

43R, + 22R, + 67C, + 89C,

IV. 13.
To inscribe a circle in a regular pentagon.
6R,+ 3R, +12C, +8C,

IV. 14.
To circumscribe a circle about a reqular pentagon.
4R, + 2R, +7C, +5C,

IV.15.

To inscribe a regular hexagon in a given circle.
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Euclid states as a corollary to this problem that the side of the
regular hexagon is equal to the radius of the circle. Hence his con-
struction, if he were not concerned with demonstration, would be
as simple as possible.

IV. 16.

To inscribe in a circle a regular figure of fifteen sides. ‘

It does not seem worth while to evaluate the simplicity of
Euclid’s solution of this problem. The solution depends on the
inscription of a regular pentagon in the circle, and Euclid’s con-
struction for this is more than twice as complicated as it need be.

V.
The propositions in Euclid’s fifth book are all theorems.

VI 9.

From a given straight line to cut off any aliquot (n™) part.

On the supposition that all the points of division are to be
marked on the auxiliary line, the compasses being lifted from the
paper each time, the result is

6R, + 4R, + (n+9)C, + (n +3)C,
VI. 10.

To divide a given straight line similarly to a given divided
straight line.
Euclid’s given divided straight line consists of three consecutive

segments,
9R, + 6R, +27C, +9C,

VI 11

To find a third proportional to two given straight lines.”
Euclid’s two given straight lines are drawn from the same point,
and the third proportional is found on one of them.

8R, +5R,+12C, +4C,

VI 12.
To find a fourth proportional to three given straight lines.

5R,+5R,+18C, + 60,
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VI. 13.

To find a mean proportional between two given straight lines.
Euclid’s two given straight lines are placed contiguous to each
other and in the same straight line.

4R, + 2R, +9C, + 60,
If the lengths of the two given straight lines had to be measured
off on another straight line, the result would be
4R, + 3R, +15C, + 8C,
The following is the simplest solution yet obtained.

F1GURE 7.

Let M, N be the two given straight lines, M being greater
than N.

Draw any straight line AB, and with A as centre and M as
radius describe a circle cutting AB in B. With B as centre and
N as radius describe & circle cutting BA, between A and B, at C;
with C as centre and N as radius describe a circle cutting the second
circle in D and E. Join DE and let it cut the first circle at F.

" BF is the mean proportional.
2R, + 2R, +7C, + 3C,
If BF be drawn, the result is
4R, +3R,+7C, +3C,
This solution is practically identical with that communicated in
1684 by Thomas Strode to Dr John Wallis of Oxford. See Wallis’s

Treatise of Algebra, Additions and Emendatwns, p. 164 (1685), or

his Opera Mathematica, I. 301 (1695).
It does not seem worth while to consider the remaining problems

of the sixth book. Euclid’s construction of VI. 18,

On a given straight line to describe a rectilineal figure similar and
simalarly situated to a given rectilineal figure,
is as simple as possible ; his construction of VI. 25,

To describe a rectilineal figure which shall be similar to one and
equal to another given rectilineal figure,
depends on I. 45, and is therefore unnecessarily complicated. The
problems VI. 28, 29 have now no practical but only a historical
interest, and VI. 30 is merely II. 11 over again.
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Two Circular Notes.
By R. Tucker, M.A.

L
1. In Fig. 8, take

LBFD=60=:CDE= . AEF,
and denote DE, EF, FD by =, v, 2 respectively ;

then
xsinBsin(C + 6) ' + 25inCsind = asinBsinC = P,
a