

ITAVAL FOB-iUmij^'o.AXiii SCHOOL
MOITTEREY, CALIFORNIA 93943-5008

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
A PROTOTYPE VISUAL STRUCTURE EDITOR

FOR PASCAL

by

Michael F. Farley

December 1986

Thesls Advisor

:

Daniel L. Davis

Approved for public release; distribution is unlimited

T230377

[J
Kl (^

J_
Q ~ -. i *"'

"i Ci
'
^1

REPORT DOCUMENTATION PAGE
I4 REPORT SECURITY CLASSIFICATION

Unclassified
lb RESTRICTIVE MARKINGS

2i SfCURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION /DOWNGRADING SCHEDULE

3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUM8£R(S) 5 MONITORING ORGANIZATION REPORT NUMBERCS)

64 NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School
6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

6< ADDRESS (Ofy. $fjf«. and /iPCodr)

Monterey, California 939^3-5000

7b ADDRESS (Ofy, Statt. and HP Code)

Monterey, California 939^3-5000

ia NAME OF FUNDING / SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applKabI*)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c ADDRESS (C/ry, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

' iiTiE (in<lude Security Clauihcatioof

A PROTOTYPE VISUAL STRUCTURE EDITOR FOR PASCAL

i: PERSONAL AUTWOR(S)

Farley. Michael F
'3a TYPE OF REPORT

Master's Thesis
3b TIME COVERED
FROM TO

14 DATE OF REPORT {Year. Month. Day)

1986 December
IS PAGE COUNT

78

'6 SUPPLEMENTARY NOTATION

COSATi COOES

F'EID GROUP SUB-GROUP

li SUBJECT TERMS (Continue on revene it neceisary and identify by 6/cKk number)

Visual programming, structure editor, Pascal,
programming environment, interactive interface

9 ABSTR/iCT (Continue on revene if r>e<euaty and identify by biotk number)

The development of programming tools for conventional, textual environments
has dramatically increased the productivity of the individual programmer,
but these environments have been developed to their logical extremes. Cur-
rent research in the field of interactive programming environments has moved
toward graphics-oriented systems to take advantage of the wider bandwidth of
information transfer that is inherent in these systems. This paper de-
scribes the design and implementation of a prototype visual programming
paradigm. Built around an interactive, user-friendly Interface which uses
a mouse, menus and windows, the system enables the user to construct Pascal
programs through a combination of graphical object manipulations and tex-
tual entries.

,"0 S'R'BUTiON/ AVAILABILITY OF ABSTRACT

Qi^NCLASSiFiEO/UNLiMlTED D SAME AS RPT DOTiC USERS

21 ABSTRACT SECURITY CLASSIFICATION

Unclassified
?;« \AME OF RESPONSIBLE INDIVIDUAL

Daniel L. Davis
2ib TELEPHONE (/nc'ude Area Code)

^08-646-3091
22c OFFICE SYMBOL

52Dv
OD FORM 1473.S4 MAR S3 APR edition may be oicd until eihautted

All Other editions ere obwlete
SECURITY CLASSIFICATION OF TmiS PAGE

Unclassified

Approved for public release; distribution is unlimited.

A Prototype Visual Structure Editor for Pascal

by

Michael F. Farley
Lieutenant Commander, United States Navy
B.S.. The University of Louisville. 1974

Submitted In partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1986

ABSTRACT

The development of programming tools for conventional, textual

environments has dramatically increased the productivity of the individual

programmer, but these environments have been developed to their logical

extremes. Current research in the field of interactive programming

environments has moved toward graphics-oriented systems to take

advantage of the wider bandwidth of information transfer that is inherent

in these systems. This paper describes the design and implementation of

a prototype visual programming paradigm. Built around an interactive,

user-friendly interface which uses a mouse, menus and windows, the

system enables the user to construct Pascal programs through a

combination of graphical object manipulations and textual entries.

c^

TABLE OF CONTENTS

I. INTRODUCTION 9

A. THE PROGRAM DEVELOPMENT PROBLEM 9

1. The Programming Cycle 10

2. A Possible Solution 10

B. THE VISUAL APPROACH 1

1

C. DESIRABLE PROPERTIES OF A VISUAL INTERFACE 12

D. SCOPE 13

II. DESIGN ISSUES 14

A. TEXT VERSUS GRAPHICS 14

B. TARGET SYSTEM RESOURCES 15

C. THE BUILDING BLOCKS 18

D. GRAPHICAL REPRESENTATIONS .19

E. SCREEN UTILIZATION AND PROGRAM CONSTRUCTION 20

III. IMPLEMENTATION 23

A. DEFINITIONS 23

B. THE OBJECTS 24

C. THE OBJECT TREE 26

D. THE SHELL 27

E. CONSTRUCTING PROGRAMS 28

1. Palette Operations 28

2. Screen Operations 31

3. Syntax Enforcement 32

F. MENUS 32

1. The File Menu 33

2. The Objects Menu 33

3. The Options Menu 35

4. The Declare Menu 36

5. The Help Menu 37

VI. CONCLUSIONS 38

A. DISCUSSION 38

1. The Interface 38

2. Extensions 39

B. SUMMARY 40

APPENDIX A: SYNTAX 42

APPENDIX B: TUTORIAL 48

APPENDIX O VISP DATA TYPES 56

APPENDIX D: OBJECT IMAGES 62

APPENDIX E: ALERTS 64

APPENDIX F: DIALOGS 68

APPENDIX G: PARAMETER BOXES 71

LIST OF REFERENCES 76

INITIAL DISTRIBUTION LIST 77

LIST OF FIGURES

2.1 The Pull-down Menu 16

2.2 A Window 17

2.3 Controls 18

2.4 The Palette 21

3.1 The File Menu for Null & Active Shell States 27

3.2 The Palette and The Program Window 29

3.3 Objects Menu Operation for a Sequencer 30

3.4 Objects Menu Operations for a Procedure 30

3.5 Disconnect Object from Objects Menu 31

3.6 The Options Menu 36

3.7 The Declare Menu 36

3.8 The Help Menu 37

B.l Naming the Program 49

B.2 Dragging a New Object 49

B.3 Dragging the Call 50

B.4 Connecting the Calls 50

B.5 Connecting the Basic 51

B.6 Print Object "Initialize" 52

B.7 Entering Formal Parameters 53

B.8 Entering Actual Parameters 53

B.9 Dragging to Other Windows 54

B.IO Printing the Program 54

B.l 1 Example.Txt 55

D.I The Sequencer 62

D.2 The Procedure 62

D.3 The Call 62

DA The Basic 62

D.5 The Block 62

D.6 The Branch 63

D.7 The If 63

D.8 The Case 63

D.9 The Loop 63

D.10 The For 63

D.l 1 The While 63

E.l naximum Objects Alert 64

E.2 Maximum Windows Alert 64

E.3 Select Branch Type Alert 64

E.4 Fully Connected Alert 65

E.5 Begin Established Alert 65

E.6 End Established Alert 65

E.7 Cannot Contain Procedure Alert 65

E.8 Cannot Contain Self Alert 66

E.9 Replace Object Alert 66

E.10 Dispose Object Alert 66

E.l I Cannot Connect Procedure Alert 66

E.12 Infinite Loop Alert 67

E.13 Save Program Alert 67

F.l About ViSP Dialog 68

F.2 Change Object Name Dialog 68

F.3 Save As Dialog 68

FA Select Sequencer Type Dialog 69

F.5 Select Branch Type Dialog 69

F.6 Select Loop Type Dialog 69

F.7 Select If Buildwindow Dialog 70

F.8 Select Case Buildwindow Dialog 70

G.l Procedure Parameter Box 71

G.2 Call Parameter Box 71

G.3 Basic Parameter Box 72

G.4 Case Parameter Box 72

G.5 If Parameter Box 73

G.6 While Parameter Box 73

G.7 For Parameter Box 73

G.8 Constants Parameter Box 74

G.9 Types Parameter Box 74

G.IO Variables Parameter Box 75

8

1. INTRODUCTION

A. THE PROGRAM DEVELOPMENT PROBLEM

Engineering software can be a formidable task. This notion is based on

the limited capacity of the unaided human intellect to fully comprehend

and track all aspects of even a moderately large computer program. These

difficulties are further exacerbated by an commensurate increase in the

size and complexity of the problems to be solved using computers.

Successful software design requires that careful consideration be given to

many issues which may affect the quality of the final product. They

include-' correctness of program specifications, life-cycle expectancy,

projected maintenance requirements and development methodology.

Additionally, large projects normally require coordinating the efforts of a

multitude of programmers, each with different tasks to accomplish in

support of that project. Although each of these issues is important, we

shall focus our attention on the specific problem of increasing individual

programmer productivity. Programming aids such as high-level languages

and tools such as full-screen structure editors and syntax-directed text

editors have helped in this area. The increase in productivity realized by

the use of these devices has been significant, allowing the creation of

programs with fewer keystrokes in less time and generally providing

programmers a better grasp on the management of program development.

The evolution of programming tools has also helped to reduce the time

spent in the programming cycle.

1. The Programming Cycle

The majority of programs are created using a conventional

development scheme called the programming cycle. This scheme involves

several phases: Edit, Compile, Link, Execute and Debug. Errors will

generally occur in the course of developing a program. The source of

these errors may be the result of improper design logic, syntactic

oversights, typographical errors, or semantic errors. These errors can

manifest themselves during any phase, requiring another iteration of the

cycle (except, of course, for errors detected during the Edit phase). The

conventional interpreted system shortens this cycle somewhat by

eliminating the compilation and link steps, but this happens at the expense

of speed and efficiency of program execution. The conventional

interactive system provides still greater flexibility through the use of Its

tools and other programming aids. Instead of sequentially stepping

through the Edit-Run-Debug cycle as in the interpretive system, the user

can easily transition directly from any state to any other state. An

excellent example of such a system is MacPascal, an interactive, textual

interpreted system which runs on the Apple Macintosh. The system

provides syntactic editing, allows the user to step through a program

while viewing the results of program execution, and provides a facility to

view the results of performing an immediate execution of a disconnected

code segment.

2. A Possible Solution

What then should be our choice of a system with which to do

program development? One solution to this problem is to fully develop

10

the program to its final form on an interactive, interpreted system, and

then port the polished source code to an efficient compiler to produce a

quality product. This is a simplistic view which doesn't take into account

the many peripheral problems of program development such as portability

and compatibility. However, if the systems used adhere to some sort of

language standard, this solution may be made viable by ensuring that the

intermediate product, i.e., the source code, is in that standard form.

There are already a great number of excellent compilers available to

handle source code written in the currently popular languages. If we wish

to increase programmer productivity, our goal must be to design an

effective interactive programming environment which is built around a

standardized high-level language. Textual environments have been

exploited to their logical extreme, so it seems that a practical alternative

is to explore the utilization of graphical techniques.

B. THE VISUAL APPROACH

Current research in the field of interactive programming environments

has moved toward graphics-oriented or "visual" systems to take advantage

of the wider bandwidth of information transfer that is inherent in these

systems. The guiding principle behind this movement is improvement of

user-system communication. There are three ways to do this: improve

the interface channel capacity, improve the sophistication of the system's

ability to process information, or improve the sophistication of the user's

ability to process information. An example of the last is the UNIX

interface's attempts to optimize a poor channel through the use of short

11

cryptic messages, both to and from the user. This is contrary to our

desire to ease the user's burden. The visual approach concentrates on the

first and second options, providing facilities to enable a system to be

used and understood by even casual users. The latest development in

visual systems is the user-friendly interface, which makes use of menus,

a pointing device and integrated graphics to improve user-system

interactions.

C. DESIRABLE PROPERTIES OF A VISUAL INTERFACE

The properties that contribute to the design of an effective interactive

interface have been well documented in the literature. Hansen presented

his "User Engineering Principles", which were used in the design of the

Emily text editing system [Ref. 1]. Two of these stand out as

significantly relevant to visual interfaces-' Minimizing Memorization and

Engineering For Errors. The former refers to the features of a system

which aid the user by displaying a list of descriptive choices to the user

rather than making him remember commands or file names, while the

latter means understanding that users will make errors, so common errors

are anticipated and either prevented or minimized and error messages are

made understandable rather than cryptic.

The User Interface Guidelines for the Apple Macintosh specify three

qualities as necessary for allowing a user to feel in control of the

computer. They are responsiveness, permissiveness and, most

importantly, consistency. Responsiveness means that the user's actions

tend to have direct results, and he is able to accomplish what needs to be

12

done spontaneously and intuitively without having to set up a chain of

sequential events or commands. Permissiveness means that the user is

allowed to do any reasonable action, is not subjected to an overabundance

of error messages, and is not forced to constantly operate in modes.

Consistency means that the interface operations remain consistent from

application to application. Menu operations, file operations and edit

operations are all accomplished in the same manner, regardless of the

application program's purpose. [Ref. 2]

D. SCOPE

Realistically, it is unfeasible to expect a fully functional programming

environment to be the product of this research. Keeping in mind the

properties we have discussed, we shall concentrate our efforts on

designing a prototype, visual programming paradigm with a user-friendly

interface in such a manner as to be extendable to incorporate an

interpreter, debugger and other useful tools. Portability requirements and

a desire to incorporate the discipline of Structured Programming into the

environment dictates selection of a high-level language that conforms to

the imperative, procedural paradigm.

13

11. DESIGN ISSUES

The selection of a user-friendly interface for our prototype presents us

with an abundance of design choices regarding its "Look and Feel." The

only true measure of the success of our design is the ease with which a

user can efficiently and effectively transfer his thoughts into actions

with minimal interference. Some of the more important design issues to

be considered are-- defining the building blocks for our programs and their

graphical representation, specifying how they will be made available to

the user, determining how to best use the limited screen space, and

developing the methodology for constructing programs with our building

blocks.

A. TEXT VERSUS GRAPHICS

We have used the term "visual" to mean graphics-oriented. Gl inert is

more specific: he defines the term visual to refer to systems whose

emphasis is primarily textual but having graphical elements [Ref. 3].

Those systems that stress graphics vice textual elements are known as

iconic environments. The nature of our interface will be iconic in that we

intend to maximize the use of graphics to create programs, yet text will

play an important role in that task. A short comparison of graphics and

text is in order here. Because it is a part of the natural human

communication process, pure text has certain advantages over pure

graphics. However, the simple act of continuous reading and

14

interpretation requires concentration on the part of the user, diverting

attention from the programming thought process. At the other extreme,

there is a learning curve which must be overcome when using any purely

graphical system. This is due in part to the ambigious nature of images,

which, without amplifying information, are subject to various

interpretations. A balance should be sought between text and graphics

such that the best qualities of each are emphasized, and thus information

transfer is maximized.

B. Target System Resources

We have stated that our interface is to be "user-friendly," and that

graphics will be emphasized heavily in the programming paradigm. The

target system must provide a specified minimum set of capabilities in

order to support our implementation.

Graphics - There must be software routines available for drawing

lines, shapes and pictures.

Mouse/Cursor - The mouse is a screen- interactive pointing device

with at least one button. The operations of clicking and dragging are

associated with the mouse. The cursor is the on-screen representation of

the mouse movements. The cursor's appearance must be modifiable to

reflect its current functionality.

Clicking - Normally this refers to the selection process where the

mouse's button is pressed while the cursor is located in an object or a

window. Selection is indicated by highlighting the object or activating

the window.

15

Dragging - This is the act of selecting an object with the mouse and

moving it from one location to another while holding the button down.

Windows may also be dragged around the screen.

Menus - These are normally catagorized by their presentation method,

which includes pull-down, drop-down, pop-up or pop-out. Menus are used

to display commands, in which case the menu items are action verbs, or

they may also be used for changing or toggling system attributes. Figure

2.1 shows a typical pull-down menu from a Macintosh application.

Desk Objects Options Oeclare Help

New
Open...

Close

Sdi»e

Quit

L,Menu Bar

Disabled Menu Itea

-Enabled Menu Itea

— Pul l-Doan Manu

Figure 2.1 The Pull-down Menu

Keyboard - A keyboard is required for entering textual elements.

Windows - Windows are on-screen shapes, usually rectangles, in

which information is displayed (Fig. 2.2). Windows must have a Size Box

for resizing and a Close Box for disposing the window from the screen.

The system must support multiple windows. Windows must also be

movable.

16

Figure 2.2 A Window

Controls - These are graphic objects that behave Mice physical

entities when manipulated by the mouse. The system must support

scrollbars for windows, pushbuttons for action initiation, radiobuttons for

single selection from a set of alternative choices, and checlcboxes for

multiple selection from a set of choices. Figure 2.3 shows the three

forms of button controls from the standard Macintosh interface.

Event Manager - In order for the user to feel in control of the

system, he must be able to immediately execute commands or actions

without having to perform intermediate steps. An event manager stores

user-generated events from the keyboard and the mouse, as well as

system-generated events from the application program. These events are

then sampled by the application program using a priority scheme in order

to determine the next command or action to be accomplished. The

sampling process is accomplished through the use of a iterative cycle

17

called the event loop. Thus the user, and not the system, controls the

program's actions.

Select FlQUor Select Toppings

®Uanilla ^ Cherries

Chocolate ^ Ulhlpped Cream

Strauiberry DNuts

1— Radio Button •— ChtckBox

Default 1 1 Pushbutton

I OK 1 [Cancel]

Figure 2.3 Controls

C. THE BUILDING BLOCKS

The strategy we employ to design a visual structure editor is to

develop visual metaphors for both the structural and executable elements

of an imperative, procedural language. These languages are composed of

sets of lexical elements which are linked together according to specified

syntactic rules to form statements. These statements may in turn be

linked together to form programs or programmer-defined action

abstractions such as the Pascal procedure or the C function. This means

that our building blocks can be as small as the individual lexical elements,

or as complex as the procedure or function. Since our goal is to improve

performance, we want our design to strike a good balance between size

and complexity. Selecting individual identifiers and operators as building

blocks would make the interface cumbersome, and program construction

18

tedious. On the other hand, using procedure-sized units would require too

much use of purely textual input, which we are trying to avoid. By

choosing to use statement-sized building blocks, we can make better use

of screen area as well as transferring some of the programming task from

the user to the system.

In addition to the assignment statement, representatives from the

various classes of language constructs are required to support the

Structured Programming technology. These include: the modular construct

or procedure, the definite iterative loop, the indefinite iterative loop, the

if/then branch and the multiple case branch.

D. GRAPHICAL REPRESENTATIONS

Icons provide an effective means of improving interaction between the

user and the computer. Icons are visual symbols representing objects or

concepts. First introduced as part of the Xerox Star Information System,

the icon has been widely applied in other systems such as the Apple

Macintosh and Microsoft Windows. Icons may be used to represent such

notions as data, data structures, operations, control and programs, but we

shall use them to represent templates for the selected language

constructs.

Careful planning is required to devise an iconic image which is

meaningful to the user without falling prey to the tendency to pack too

much information into the image. For an iconic image to be meaningful, it

must be of sufficient size to be readily discernable, that is, to display

distinguishing attributes that would rapidly become familiar to the user.

19

A reasonable set of image attributes could include the following:

** Type - This could be represented bu a graphical image which
incficates the type of language construct.

** Location - This could be the current position on the screen.

** Recognizer - This could be a modifiable text name which is

initially assigned by the system.

** Uniqueness - This would be implicitlu accomplished by
consideration of the image's type, location and recognizer.

The image would then consist of an icon to represent the language

construct type and a text area into which a name could be placed. The

entire image must be movable (within syntactic constraints) throughout

the entire program structure.

E. SCREEN UTILIZATION AND PROGRAM CONSTRUCTION

Numerous methods of representing programs have been proposed and

implemented since the advent of visual programming. These include the

classical flowchart [Ref. 41, structure diagrams [Ref. 51, transition

networks [Ref. 61, and various hybrids of all three [Refs. 7,81. We require

a structured methodology which can be applied to a set of iconic images

with which the user can build program segments rapidly without being

overly concerned with program details such as declarations or parameters.

The user is then manipulating the abstract form of the language construct

represented by the template. The details of a particular construct are

hidden from the user until such time as it is convenient for the user to

return and fill in the details. In fact, some details may be filled in by the

20

system. While attacking this problem, we must also consider the

complementary problem of screen utilization.

Intuitively, a palette seems the most efficient method of displaying

the iconic images of the types of language constructs available to the user

for program construction. A palette is a window in which a collection of

symbols resides. Clicking on one of these symbols generally signifies

intent to commence an operation or a mode change. Our palette would

have not only symbols for construction, but might also contain a special

symbol for accomplishing cursor mode changes (Fig. 2.4).

Construction Icons

-R Typical Palatta

Cursor Mode Select

Figure 2.4 The Palette

At this point, program size is limited by the size and number of the

instances of these images that could be contained in the remaining screen

area. Even using the smallest meaningful representations, the screen

would quickly be filled with images which would equate to a relatively

21

short program. The nested format of a block-structured language provides

a simple, yet flexible, solution that is consistent with our desire to be

able to provide an editing facility which is unhampered by screen area

constraints. We use windows as on-screen repositories into which

objects may be placed. These windows represent the operative statements

of a language construct, that is, they are the metaphor for those

statements. The on-screen analogy for nesting of statements is the

ability to "open" a language construct into a window, and then that window

could contain other constructs. By using either a global search facility or

by following the program flow through the images and their windows, the

user may easily move to a particular location in the program, much the

way searching or scrolling allows localization of efforts in a textual

environment.

The sequential relationships of icons in a block is expressed by

connecting lines between them. A mode shift facility is required for the

cursor in order to differentiate between connect operations and other

operations on the icons. By clicking on the special cursor mode icon in

the palette (while in the select mode), the operation of the cursor toggles

and becomes connect. Visual feedback will be provided to the user so that

he may always be cognizant of the functionality of the cursor.

22

III. IMPLEMENTATION

Our goal is to pursue implementation of the prototype to the point of

allowing the user to manipulate iconic images representing language

constructs, thus building a program from these images, and then to provide

feedback in the form of textual output to the screen or to a printable file

on secondary storage. This paradigm is based on constructs which are a

subset of the Pascal language being stored as Objects in a database. We

use the common term Object to refer to the iconic images, and the

abstract database which represents their relationships is called the

Object Tree.

Pascal was selected as the language of choice because of its

readibility, portability and conformability to the discipline of Structured

Programming. The syntax of the selected language subset is depicted in

Appendix A.

The Apple Macintosh was selected as the target machine mainly due to

its rich selection of built-in software with which a programmer can

easily create the facilities of a user-friendly environment.

A. DEFINITIONS

In order to adequately describe the operation of the interface, we must

specify some terms.

Connecting - Drawing a connecting line between the two Objects, or

between an Object and the top or bottom of the screen.

23

Buildwindow - A window in which Objects may be dragged, dropped

and connected for the purpose of constructing program segments.

Active Window - This is the Buildwindow which is currently active.

Activation is made apparent to the user by the window's scroll bars

becoming visible.

Inactive Window - Any visible window that is not the Active

Window.

Text Window - A text window displays the textual results of Object

manipulations.

Dialog Box - A special kind of window used for soliciting or

conveying important information, dialog boxes are used for error

messages, data input and file operations.

Parameter Box - This is a dialog box which is used for entering

textual elements associated with a particular Object.

B. THE OBJECTS

This prototype is an experiment in using graphical manipulations to

construct programs and is therefore not designed to accomodate all the

facilities of the entire language. Representative language constructs from

the various classes are provided to support the basic elements of

Structured Programming. The Object images are depicted in Appendix D.

We now specify their equivalent language constructs in terms of the

Pascal subset.

24

Program - The only Object not represented by an iconic image, the

Program represents the Pascal program, and is manifested by a window

which is opened during system initialization.

Sequencer - The generic term for Objects that are equivalent to

simple sequential steps in a program. The Object types derived from the

Sequencer are the Procedure, the Block and the Basic.

Procedure - The basic modular construct. Procedures are declarations,

may only be dropped within the Program and other Procedures, and are not

connectable. The Procedure enables nesting of other Procedures and Calls,

as well as other Objects.

Call - The instance of a Procedure, a Call is created from a Procedure

and then moved to the location from which the Procedure will be called.

Calls are elemental units of the Object database.

Block - A special construct used to extend the maximum allowable

number of Objects contained in a Buildwindow, the Block is the

only Object which does not represent a template for a language construct.

Basic - This is the elemental sequential unit from which programs are

built. Each Basic contains a series of Assignment or Input/Output

statements. Basics are also elemental units of the Object database.

Branch - The generic type associated with branching control

constructs in a program, the two Branch types are the If and the Case.

If - The basic branching construct, the If is associated with either one

or two Buildwindows, depending on whether or not the Else part is

required.

25

Case - The multiple branch construct, the Case has a Buildwindow

associated with each declared Case Constant.

Loop - This is the generic type which represents the iterative type

constructs, the For and the While. Only one Buildwindow is associated

with this Object class.

For - The definite iterative construct.

While - The representative conditional iterative construct.

C. THE OBJECT TREE

The Program is initialized as the root of the Object Tree. As new

Objects are dragged onto the Active Window, they are added to the Object

Tree. The abstract structure of the Object Tree is basically represented

by two associated tables. After a successful drag has been made, a new

entry is made in the Objects table, and the containment relationship is

recorded in the Has Objects (HO) table. Each Object type has a direct

relationship (HO table entries) between itself and its contained objects

except for the Branch class of objects. Because of the requirement to

divert control flow, a design decision was made to create separate

Objects for each possible path of execution. Thus, for the If, two

additional entries are made into the Object table with special type

identifiers to specify them as Then and Else siblings, respectively. All

further containment relationships are then recorded with the appropriate

sibling (Then or Else) in the HO table. The Case situation is similar, with

four new Objects being added to the Object table, one for each potential

case constant. This abstract structure allows Objects to be nested to any

26

level, and allows for a relatively simple tree traversal to retrieve the

data. The leaves of the tree are the Basic and the Call Objects.

D. THE SHELL

In order to preserve the programs created with the system, it is built

around a shell from which programs may be saved or retrieved from

secondary storage. With the system in operation and in the Null state, the

user is be able to select and open a program from a list of stored

programs, or open a new Program template, in either case transitioning to

the Active state. From the Active state, the user has the following

options: to save a program, to save a program under a different name

while retaining the original version, to close a program and transition to

the Null state, or to quit the application entirely. The system itself may

be started in one of two ways-' a program document may be selected and

opened, loading the subject program onto the shell and placing the system

in the Active state: a new program template may be initialized and loaded.

During transition to the Active state, the Program window is opened and

the system is also placed in the Select mode (Fig. 3.1).

Neuj Neu»

Open... Open,,,

Close Close

$m*B Saue

S<ive as... Saue as...

Quit Quit

Figure 3.1 The File Menu for Null & Active Shell States

27

E. CONSTRUCTING PROGRAMS

Programs are constructed through a combination of Palette operations,

menu operations and screen operations. These operations may result in

requests for information from the user, which are handled through the

dialogs and parameter boxes depicted in Appendixes F and G.

1. Palette Operations

The Palette is a permanent window located on the left side of the

screen. In addition to the decorative application icon at the top, the

Palette contains four other icons. The middle three are used for program

construction. They represent the generic icons for the three basic classes

of constructs, the Sequencer, the Branch and the Loop. The bottom icon is

the Mode Select, and is used to shift between the cursor modes of Select

and Connect.

While in the Select mode, new Objects may be dragged from the

Palette to the Active Window. By clicking in one of the three Object

icons in the Palette, the cursor changes appearance to signify

commencement of the drag operation. The Mouse is then dragged until it

passes over the boundary of the Active Window, at which time a dotted

outline becomes visible, signifying that the Mouse is in the allowable drop

zone. The initial drop of an Object is restricted to the Active Window to

prevent inadvertant drops in the wrong window while several windows are

open on the screen simultaneously. An inactive window may be activated

by simply clicking in it. When the mouse button is released, the drop

location is verified, and if syntactic criteria are met, the Object is drawn

in the window, and its record is added to the Object Tree database.

28

Figure 3.2 The Palette and the Program Window

information regarding the choice of a specific type is then solicited

from the user. The user may make a choice then, or delay his choice until

such time as he is more certain of his programming requirements.

Initially, a name is assigned to each Object consisting of the prefix 'Obj'

concatenated with the Object's unique identification number. This is the

Recognizer attribute, which may be retained as is, or changed at the

discretion of the user. The Object's icon delineates its specific type.

At this time, allowable menu operations become enabled. These Menu

operations are dependent on the Object's type and connection status. For

29

example, if a new Sequencer is dragged to the Active Window, appropriate

commands are enabled in the Objects menu, including Select Type (Figure

3.3). If the Sequencer's type is changed to Procedure, then the menu will

be changed to reflect the allowable operations (Figure 3.4).

Options Declare Help

Open Object

Dispose Object

Change Name
Select Type

inier P<ir^meier^

Dis<oftnect QbjeiX

Ire&Xe Call

R06:Untitled

Figure 3.3 Objects Menu Operations for a Sequencer

Options Declare Help

Open Object

Dispose Object

Change Name
S8l8< ^ Type

Enter Parameters

Oisconnecl Object

Create CaH

'R06:Untitled

Figure 3.4 Objects Menu Operations for a Procedure

To shift to the Connect mode, clicking in the Node Select icon while

in the Select mode will change the appearance of the cursor to a pen, thus

30

indicating the user's ability to connect objects to each other or to the top

(the "begin") or bottom (the "end") of the screen. The system will only

allow a maximum of two connections per Object, and will only allow one

"begin" and one "end" to be established. If a connected Object is selected,

Disconnect Object becomes enabled in the Objects menu (Figure 3.5).

Options Declare Help

Open Object

Dispose Object

Change Name
Sele< t Type

Enter Parameters

Disconnect Object

Create Call

Figure 3.5 Disconnect Object from Objects Menu

2. Screen Operations

Already established Objects which are not connected may be moved

within a Buildwindow to an empty location, or to replace another

previously established Object, or may be moved to empty locations in

other open Buildwindows (if such a move would not violate the program

structure). Moves are initiated by clicking in and dragging the Object to

the desired location. Replacements in other than the Active Window are

not allowed in this situation. Since an established Object is being

dragged, the cursor's appearance will differ from what it would be if a

new Object were being dragged.

31

3. Syntax Enforcement

Syntactic constraints are enforced by restricting Palette operations,

screen operations and menu operations. If an action is an obvious syntax

violation, for example, attempting to nest a Procedure declaration within

a For loop, then the action is disallowed, in that particular instance being

accompanied by an error message. The restrictive mechanism is

consistent. If a menu operation is not allowable, then the equivalent

command from the menu will be disabled. Unauthorized screen operations

result in one of two alternatives. If the inconsistency happens at the

outset, say, trying to start a connection in a Procedure, then the action is

ignored. If the error is at the end of the operation, say, trying to end a

connection in an Object which already has two connections, then the

action is disallowed with an error message to indicate why the operation

was not completed. The System error messages are listed in Appendix E.

Finally, Palette operations which may result in syntactic errors are

simply disallowed.

F. MENUS

The menu bar is located at the top of the screen. The menus are titled

according to the types of commands which they represent. Dialog boxes

are associated with various menu commands. Parameter Boxes from

Objects and Declare commands are used to enter information.

32

1. The File Menu

This menu contains the commands which access new and old

programs. Selection of menu items from the File menu allow transitions

between the Active and Null Shell states.

New - Enabled only when the application is in the Null mode (no

program being edited), New initializes data structures and opens a new

program for editing.

Open - Also enabled only from the Shell. Open presents the user

with a list of saved programs from secondary storage that may be opened

for editing. The user is allowed to select and open, or cancel the

command.

Close - Enabled when a program is active, Close transitions the

application to the Shell mode. If a change has been made to the current

active program, prompts user to Save changes.

Save - Enabled when a change has been made to the active program,

Save rewrites the formatted program to secondary storage.

SaveAs - Always enabled, SaveAs prompts the user for the new

name or cancel, and also prompts to replace if that file exists.

Quit - Always enabled. Quit prompts to save changes if any, then

terminates application, transitioning to the Macintosh file system.

2. The Objects Menu

The Objects menu contains commands which initiate operations on

the Objects. Generally, an Object must be selected to enable these

commands.

33

open Object - Enabled only when an Object has been selected,

opens Objects with block attributes into Buildwindows. opens Basics and

Calls into the associated Parameter dialog box. The If and the Case are

special cases. After selecting Open Object, a small dialog box is

presented to the user soliciting the user's choice of the particular

buildwindow to be opened on the screen. The if object allows for two

possible choices, the Then window and the Else window. The Case object

has four allowable cases which open up into windows for additional

program construction. The Basic object does not open for further

construction, but rather forms the basis for the recursive structure of the

program. Basics open up into dialog boxes into which up to five

executable statements may be entered.

Dispose Object - Enabled only when an Object has been selected,

recursively disposes all the Object's descendents and then disposes the

Object. If the selected Object is a Procedure, also disposes any

associated Calls. If the selected Object is an If or Case, associated

sub-blocks are also disposed.

Change Name - This is enabled when an Object has been selected,

except for a Call, whose name remains the same as its parent Procedure.

Presents the user with a text entry box (Fig. F.2) in which to enter the

new name or cancel.

Select Type - This is enabled when a generic Object has been

selected. Allows for selection from a list of available types within the

language construct class, e.g., Branch may be changed to If or Case. Some

type selections may be restricted for syntactical reasons, e.g., Procedures

34

may only be declared in the Program window or other Procedures, so

selection is disallowed in other type windows.

Enter Parameters - This opens the appropriate dialog box into

which the user may enter specific textual data concerning the Object.

Disconnect Object - Selecting Disconnect Object removes all

connections from the selected Object.

Create Call - This command creates an instance of a Procedure

which can be dragged to any Buildwindow from which the parent Procedure

is "visible."

3. The Potions Menu

This menu is for items that are not directly associated with

program construction. It contains commands for text display and also

those which control application program options (Fig. 3.6).

Select Type Dialogs On/Off - controls the automatic appearance

of the Select Type Dialog box which appears when a new generic construct

is dropped in the Active Window.

Show Text On/Off - determines whether or not a text window

is displayed on the screen when the Print Program or Print Object

commands are selected.

Print Program - This command writes the textual version of the

current form of the program under construction.

Print Object - This command writes the textual version of the

selected Object's abstract structure.

35

Options

Select Type Dialogs Off

Show TeHt Off

Print Program
Print Object

Figure 3.6 The Options tlenu

4. The Declare Menu

This menu contains commands which bring up dialog boxes into

which global and local declarations may be entered (Figure 3.7). Locals

may only be entered by selecting a Procedure.

Global Constants - Enter Program constants.

Global Types - Enter Program types.

Global Variables - Enter Program variables.

Local Constants - Enter selected Procedure's constants.

Local Types - Enter selected Procedure's types.

Local Variables - Enter selected Procedure's variables.

Help

Global Constants

Global Types

Global Uariables

Local Constants

Local Types

Local Uariables

Figure 3.7 The Declare Menu

36

5. The Help Menu

The Help menu provides brief descriptions of the Palette icons and

their representations (Figure 3.8).

Helpm^^^H
4,

1

Sequencer

Branch

Loop

Mode Select

Figure 3.8 The Help nenu

37

IV. CONCLUSIONS

A. DISCUSSION

1. The Interface

With a minimum of practice, a user can rapidly assemble the

components of small programs. The system is easy to use, and most

actions are intuitive and natural. The iconic images are simple and are

easily recognized. Particularly useful are the "Select vice Enter" features

implemented in support of the user-friendly principles. These features

allow the user to select from a list of available choices rather than

having to remember those choices.

Although the graphics produced by the Macintosh's internal software

are superb, screen area is still a problem, due in part to the small size of

the Mac's screen, and compounded by the large size of an Object's image.

Less clutter can be realized by reducing the size of the image and

incorporating one of the new page-sized screens which are now available

for the Macintosh.

The Macintosh User Interface guidelines also specify a double-click

(two clicks within a short, specified time period) action as equivalent to

an open action command. That shortcut would have been helpful in

reducing the number of times that we used the menu for entering

parameters.

The most severe problem of the system, which is a fundamental

problem in all visual programming systems, is its inability to adequately

38

visualize locality. While working within several nested layers, it is

possible for the user to mentally lose track of the surrounding context. A

solution to this problem is a global locating facility, which could display

a scrollable listing of the Object's names. This display could be somewhat

miniaturized, with the Objects ordered in sequence as they are in the

program.

2. Extensions

Several facilities could be added to the system which would

facilitate more rapid programming. These are a Duplicate Object command

to create exact replicas of Objects, and a Store Object command to store

copies of often used Objects in a user-defined library. These stored

Objects could then be retrieved through a selection process similar to

opening a program. Another necessity is a Search function. Searches

could be conducted using either a name or type. The designated start

point for the search could be Indicated either by selection or defaulting to

the entire program.

The original concept for the interface envisioned a small parser for

expressions and statements entered into the parameter boxes. Identifiers

parsed from these entities would then be entered into a table which would

be accessible by the user to remind him which entries required resolution.

Constants, types or variables could then be automatically entered into the

appropriate declaration boxes.

The language constructs chosen to be represented as Objects were

chosen based on their syntactic requirements and structure. Expansion to

include the entire Pascal language can be accomplished by using the design

39

principles employed herein. As an example, a Function could be declared

exactly as is a Procedure, and then calls to that Function would be

acceptable in any Object where they were lexically and syntactically

correct.

The graphical appearances of the Object images do not reflect any

great insight into iconic representation, but rather are just simple

representations that seemed fairly familiar and easily recognizable. By

using the Macintosh as our target system, we are able to store these

iconic representations such that we can modify their appearance without

having to change the application program. Similarly, the appearance and

labelling used in the dialogs and error messages may also be rearranged or

changed. There are several public-domain tools which may be used to

make these modifications, and it seems that incorporating such a tool into

the interface would give the user the opportunity to fashion the interface

to conform to his own personality, thus taking another step toward

increasing programmer productivity.

The Object database is composed of several tables. A program's

abstract form is not a conventional tree but is realized through the table's

relationships. To facilitate adding an interpreter or incremental compiler

to this interface using current technology, the system would most likely

have to be modified to store the program in the classic tree form.

B. SUMMARY

The objective of this research was to develop a visual programming

paradigm which incoporated a user-friendly interface. A peripheral goal

40

was to determine what features would be necessary to achieve the most

effective interface possible. Our primary objective was achieved. We

designed and implemented a prototype visual programming system

integrated in a user-friendly interface. The prototype has been used to

create small programs which have subsequently been compiled

successfully. Through the addition of the facilities discussed above, the

prototype could be extended to handle much bigger programs with greater

efficiency.

As with any system which is built from scratch, the transition from to

implementation was not without tribulation. The learning curve

associated with mastering the Macintosh graphics routines and managers

is steep, requiring many hours of practice to determine the visual effects

produced through various resource combinations. Once that obstacle is

overcome, the vast amount of commercial and public-domain software

tools available for the Macintosh makes it an excellent system on which

to do development.

41

APPENDIX A

SYNTAX

The syntax described here is not meant to represent the entire Pascal

language, but merely the subset associated with the Objects used for

program construction. Major constructs not supported by the system are:

labels, goto statements, with statements, repeat statements and

functions. The definitions for identifier, expression, constant, type and

variable should be those of the follow-on compiler or interpreter.

Terminals are indicated by bold text displayed in ovals.

bVwk :

h—

•

6toUttMon-ptr\ —

•

sUtenwftt-fMrt

st4tMmrit~pvi

:

oofnfMMjnd'StAtMMni —

*

oofnpound~st>tMTwnt .*

-c
>l^

sUtcmeM

<i>

42

dMt«r«tion-paH

:

-

o«nft4nt-deoUr«tioft-fMri

^~

^ type-<tecUr«tion-p4rt

1

'

^-* v«r1«b1»-<tootarat1on-|Mrt
^

<
1

'

^-H proc«dure-<tecUratton-|Mrt ^
,

-<
>I^

consiint~<tec1iritionT
}-(i>-^^ KftmrntrJ-(HH.oonst^nl

typr-dfolar

Jrtyp*-dMlar«tion

type-declaration:

ii^^n tt^MB- -0- type -KD^

43

v«n«bte-<tecUratior»-|x«i

:

-G^ v«rubW-ikolar«tion

J ^ . "T" '.—

L

H proovduTC dwlir^tion p

I J

L fbrni*^pjr*iiwt<r"Hstr

44

par«rmt«r-d»ol4r4tion

:

-<rHMMiiiiiir type -
Mny
st^Miwnt:

simpte stAtMTMnt

. .

5fa-wU« wHsUtwiiwit

ttslQraMnt~stjittfMnt

,

-

. J

infMit-output-sUftffTwnt

prooMlure~st4tMnHrt

tfsi9nnMn't''*sta(ttfTwnt

:

variablt •xprtsswf) -<2^

45

prootdure-sUtenwfYt

:

—^ proc«durr-

b «ctiMl-p«-ainrttr-1istr
struotwfd" st^ttintnt

.

^

1

^^^"^ COIMIIIMmrSUTtflNm

. .

conditioiMl-sUtMiwnt

:

1

1 k-

xfsUAtmtiA'.

-©-:expresston -) 1

/
r , ,

MEh sUtMTMnt 1 '

\\ ^ ^

^JH-)- «i it. *SUwIntm

46

o«n:

oonstwt stattimfit —

:

for-st*t*iTwn^

vMte'stAtcnwnt

fDr~st4ttnMnt I

—/firV-l v«i«bl» —((^V-i •)qr*ssion

J

HS> 4 MpTMsion « I t-,-i ...I

wtnV-sUttnwnt:

ncpTMsion st^iffTMnt

47

APPENDIX B

TUTORIAL

This brief tutorial is intended to give the user a feel for the mechanics

of program construction. Parameter Boxes and other dialog boxes not

shown are depicted in other Appendixes.

After the application is started, the Program window is opened for

construction. We start by naming the program. Pulling down the File

menu, we release the mouse button when Save As Is highlighted, bringing

up the Save As Dialog box, into which we will enter the name of our

example program (Fig. B.I).

We wish our program to take a number from the keyboard, do some

computations on the number, and then print the number to the screen. By

separating the problem into three separate tasks, we exercise the

principle of division of labor, thus making the problem easier to

understand and program. We shall name the three tasks as follows^

Initialize, Compute and Output. The procedure is the modular construct in

Pascal which allows this kind of sub-tasking. To declare the procedures

which will accomplish our tasks, we start by dragging a Procedure Object

to the active window (Fig B.2). The new Procedure is then renamed to

"Initialize" by selecting Change Name from the Objects menu. A Call to

the Procedure is then created by selecting Create Call from the Objects

menu, and moved into position for connection (Fig. B.3). Similar actions

are required to declare and create Calls to procedures "Compute" and

48

"Output". These Calls are then connected in the order in which they are to

be executed (Fig. B.4).

^j^H Objects Options Declare Help

mm

^

^
n^

PR06:Untitled

Seue document as: UISP Disk

EKompie
TJect]

[Saue J [Cancel] \ [Drlue]

Figure B.l Naming the Program

i File Objects Options Declare Help

*
i^

PROGcEHample

®i

Figure B.2 Dragging a New Object

49

i File Objects Options Declare Help

^
i^

PR06:EKample

Figure B.3 Dragging the Call

"^

Figure B.4 Connecting the Calls

50

Procedures "Initialize" and "Output" are constructed by opening each

Procedure's Buildwindow, and then dragging a Basic into the open

windows. After the Basics are then connected properly (Fig. B.5). we

select Enter Parameter from the Objects menu, and enter the appropriate

1/0 statement. By selecting Print Object with Procedure "Initialize"

highlighted, we may view the intermediate results of our efforts (Fig B.6).

Figure B.5 Connecting the Basic

Having completed the first and last procedures, we now must construct

the "Compute" procedure. There will be an additional compution necessary,

51

i File Objects Declare Help

'^

TeHtUlindoiii:PROC:lnitiolize

procedure lniti«hE*;

begin { Initialize}

re«J(Number);

end; {Initialize}

Figure B.6 Print Object "Initialize"

so we will again delegate a sub-task to demonstrate the use of a nested

procedure. After the "Compute" Procedure's window is opened, the new

Procedure is declared and named "Product." a name indicative of its

function. Formal parameters are required and declared through a

parameter box (Fig. B.7). A Call is created for "Product" and the

Procedure's "var" and "type" formal parameters are echoed in the Call's

actual parameter box (Fig B.8). The remainder of "Compute" is now

constructed using a Basic and a While. The While is opened, and the Call

to "Product" is dragged from its declaration window to the opened While

window (Fig. B.9). Constants and variables are then added using the

Declare menu. The program may then be viewed in its textual form by

selecting Print Program from the Options menu (Fig. B.IO). Since the

program text Is larger than the text window, pressing any key will stop

the scrolling text, as well as resume scrolling. The entire program is

also written to a text file (Fig. B.l 1) that may be accessed for printing,

interpreting or compiling.

52

Procedure Contlnict: 'Product'

Enter Formal Parameters:

uar Identifier Type

D

D

TheNumber Integer

L OK 1 [Open Build Ulindoui 1 (Cancel]

Figure B.7 Entering Formal Parameters

Coll Construct:

Enter Rctual Parameters:

Uar Identifier

- Product

-

Type

[a

D
n

dumber Integer

^
(OK) (Cancel)

Figure B.8 Entering Actual Parameters

53

File Objects Options Declare Help

4^

^
a

PR06:EH&inple

n O

^
ImiiitVmm

mHILE:0bJI2

I f?

O
5

Figure B.9 Dragging to Other Windows

*
K^

a

TeHtlllindoiii:PR06:EHample

progr^n Exampto;

NuntbfT '. ntt^CTj ^
procedure lniti«tize;

begin {Inttulize}

rewKnumber);

eftd; {Inttlatize}

prooedure Compute^

const

fn«x"7;

var

counter .* integer j

procedure ProductC >fMr theNumber : integer);

const

factor = 2;

begin {Product)

theNumber - theNumber * factor

:

Figure B.IO Printing the Program

54

progr«n Example;

var

NiMnbtr : w>t*9Wi

proo«dur* Initiafiz*;

begin {Initialize}

read(Numbtr);

end; {hltlatize}

procedure Compute;

const

max = 7;

var

counter : integer;

procedure Product(var TheNumber : Integer);

const

factor = 2;

begin {Product}

TheMumber ~ Theffumber * factor;

end; {Product}

begin {Compute}

counter :» 0;

while counter < max do

begv)

Product(Number);

counter := counter * 1

;

end;

end; {Compute}

procedure Output;

begin {Output}

vnte(Number);

end; {Output}

begin {Example}

Initialize;

Compute;

Output;

end. {Example}

Figures. 11 Example.Txt

55

APPENDIX C

VISP DATA TYPES

const

MaxTypes = 18;

MaxWindows = 6;

MaxLocals = 6;

type

{Enumerated types for interface}

ObjectStateType = (Selected. NotSelected);

FileStateType = (Shell, OpenProgram);

ScreenModeType = (Select, Connect. Null);

{Type Table: used for naming Objects and Buildwindows)

TypeRec = record

Type_ID : INTEGER;

Title : Str255;

end;

TypeTable = arraylK.MaxTypes] of TypeRec;

{Windows Table: used for storing pointers to open windows

and handles to their scrollbars }

WindowsRec = record

Ob]_ID

TheWindow

HScroll

VScroll

end;

WindowsTable = array! l..NaxWindowsl of WindowsRec;

INTEGER;

WindowPtr;

ControlHandle;

ControlHandle;

56

{Locals Record: used to record constants, types and variables

associated with a Program or a Procedure)

CRec = record

ConlD Str255;

VallD : Str255;

end;

CArray = array[l..naxLocals] of CRec;

TRec = record

TypID : Str255;

DefID : Str255;

end;

TArray = array[l..riaxLocals] of TRec;

VRec = record

VarlD ' 5tr255;

VtylD : Str255;

end;

VArray = array[l..naxLocals] of VRec;

LocRec = record

Consts : CArray

Types : TArray

Vars : VArray

end;

{Object Record: used to store unique ID number, name, type and location}

ObjPtr = *ObjRec;

ObjRec = record

Obj_ID : INTEGER;

OType : INTEGER;

Name : 5tr255;

Frame : Rect;

ObjLink = ObjPtr;

end;

57

{Procedure Record: used to store ID number, formal parameters

and local constants, types and variables}

ProPtr = 'ProcRec;

ProcRec = record

INTEGER;

BOOLEAN;

Str255;

Str255;

LocRec;

ProPtr;

Owner_lD

Varl.Var2,Var3

iDl.ID2.lD3

T1,T2,T3

Locals

ProcLink

end;

{Basic Record: used to store ID number and contained statements}

BasicPtr = ^BasicRec;

BasicRec = record

Owner_ID INTEGER;

Statement 1 Str255:

Statement2 Str255;

Statements Str255;

Statements Str255;

Statements Str255;

BasicLink •• BasicPtr;

end;

{Call Record: used to store Call's ID,

parent Procedure's ID and actual parameters}

CallPtr = 'CallRec;

CallRec = record

CalLID : INTEGER:

Proc_iD : INTEGER;

ActuallDl Str255;

ActualID2 5tr255;

Actual ID3 Str255;

CallLink : CallPtr;

end;

58

{If Record: used to store If 's ID number and Test Expression, as

well as the ID numbers of siblings Then and Else}

IfPtr = *
IfRec;

IfRec = record

Owner_ID INTEGER;

Ther^lD : INTEGER;

Else_lD : INTEGER;

TestExpr ' Str255;

IfLink •• IfPtr;

end;

{Case Record: used to store Case's ID number. Selector and Case

Constants, as well as the IDs of siblings}

CasePtr = "CaseRec;

CaseRec = record

Owner_ID : INTEGER:

Casel_lD : INTEGER;

Case2_ID : INTEGER;

Case3_ID INTEGER;

Case4_ID = INTEGER;

Selector •• Str255;

CaseConst

1

•• Str255;

CaseConst2 : Str255:

CaseConst3 • Str255;

CaseConst4 : Str255;

CaseLink CasePtr;

end;

{While Record-" used to store While's ID number and Test Expression}

WhilePtr = *WhileRec;

WhileRec = record

Owner_ID : INTEGER;

TestExpr - Str255;

WhileLink : WhilePtr;

end;

59

{For Record"- used to store For's ID number, Index Variable,

Initial Value, Final Value and Incrementor)

IncrType = (Up.Down);

ForPtr = ^ForRec;

ForRec = record

INTEGER;

Str255;

5tr255;

IncrType;

Str255;

ForPtr;

Owner_ID

IndexVar

lvalue

Incrementer

FValue

ForLink

end;

{Has Connections Record: used to store the containing

Object's ID. the two Objects connected,

and the two points of connection}

HCPtr = HCRec;

HCRec = record

Owner_.ID •• INTEGER;

Ob jOne • INTEGER;

ObjTwo : INTEGER;

PtOne : Point;

PtTwo • Point;

HCLink •• HCPtr;

end;

{Has Objects Record-' used to store the containing Object's ID,

the contained Object's ID}

HOPtr = *HORec;

HORec = record

Owner_ID INTEGER;

Obj_ID : INTEGER;

HOLink : HOPtr;

end;

60

van

Types

Windows

Globals

ObjHead

ProcHead

BasicHead

IfHead

CaseHead

ForHead

WhileHead

CallHead

Ca I IP lace

CallKey

HCHead

HCPlace

HCKey

HOHead

HOP lace

HOKey

TypeTable;

WindowsTable;

LocRec:

ObjPtr;

ProPtr:

BasicPtr:

IfPtr;

CasePtr;

ForPtr;

WhilePtr;

CallPlr:

CallPtr;

INTEGER;

HCPtr;

HCPtr:

INTEGER;

HOPtr;

HOPtr;

INTEGER;

{The Type Table}

{The Windows Table}

{The Globals Table}

{The Objects Table}

{The Procedure Table}

{The Basic Table}

{The if Table}

{The Case Table}

{The For Table}

{The While Table}

{The Call Table}

{Placeholder for Call Table}

{Key for Call Table}

{The Has Connections Table}

{Placeholder for Has Connections Table}

{Key for Has Connections Table}

{The Has Objects Table}

{Placeholder for has Objects Table}

{Key for Has Objects Table}

61

APPENDIX D

OBJECT IMAGES

Figure D.I The Sequencer

Figure D.2 The Prcx:edure

Figure D.3 The Call

Figure D.4 The Basic

Figure D.5 The Block

62

Figure D.6 The Branch

Figure D.7 The If

Figure D.8 The Case

Figure D.9 The Loop

Figure D.IO The For

Figure D. 11 The While

63

APPENDIX E

ALERTS

ID
MoH 8 Objects

PerUlindomll

rsr^

Figure E.l Maximum Objects Alert

Figure E.2 Maximum Windows Alert

iJlj Mutt Select Branch Type

Prior to Opening Builduiindoiv!

Figure E.3 Select Branch Type Alert

64

Figure EA Fully Connected Alert

Figure E.5 Begin Established Alert

Figure E.6 End Established Alert

Figure E.7 Cannot Contain Procedure Alert

65

Figure E.8 Cannot Contain Self Alert

j?J Replace 'ObJOne- ?

1 Reploce] (
Cancel

]

Figure E.9 Replace Object Alert

M Dispose 'ObJOne' ?

Cancel I Dispose

Figure E. 10 Dispose Object Alert

Figure E. 1 1 Cannot Connect Procedure Alert

66

E mrinlte Loop Action!

-ObJTuio- Rlready Contained In -QbJOne-

Figure E. 1 2 Infinite Loop Alert

Soue file 'Untitled'

before closing?

Sane I [Discard 1 I Cancel 1

Figure E. 13 Save Program Alert

67

APPENDIX F

DIALOGS

Uisual Structured Pascal ^#

Uisual Interface for a Pascal

Structure Editor

by Mike Farley

CqEII

Figure F.] About ViSP Dialog

Figure F.2 Change Object Name Dialog

Saue document as: UiSP Disk

[Saue Cancel
]

I [Driue

Figure F.3 Save As Dialog

66

Select Sequencer Type:

® Sequencer

Procedure

O Basic

Block

[OK 1 [Cancel]

Figure F.4 Select Sequencer Type Dialog

Select Branch Type:

$ Branch

Olf
OCase

Figure F.5 Select Branch Type Dialog

Select Loop Type:

®Loop

OFor

O UIDile

I OK I [Cancel
I

Figure F.6 Select Loop Type Dialog

69

Select Buildmindoui:

®Then

OEIse

(OK) [Cancel]

Figure F.7 Select If Buildwindow Dialog

Select Bullduilndoui:

®Ciise1

O Case2

O Case3

O Case4

I OK 1 (Cancel 1

Figure F.8 Select Case Buildwindow Dialog

70

APPENDIX G

PARAMETER BOXES

Procedure Construct:

Enter Formal Parameters:

Uar Identifier

-ObjName-

Type

D 1

1

n

L OK 1 I Open Build Ulindoui 1 [Cancel]

Figure 6.1 Procedure Parameter Box

Call Construct: "ObJName-

Enter Rctual Parameters:

Uar Identifier Type

D
D
D

I OK 1 [Cancel 1

Figure G.2 Call Parameter Box

71

Basic Construct: "ObJName"

Statement!

Statement2

Statements

Statement4

Statements

1 OK 1 {Cancel 1

Figure G.3 Basic Parameter Box

Case Construct: 'ObJName'

Selector
1

Enter Case Cons tants:

Casel

Case2

Case3

Case4

I OK 1 (Open Build Ulindoui 1 [Cancel]

Figure G.4 Case Parameter Box

72

If/Then/Else Construct: 'ObJName'

Enter Test EHpression:

[OK 1 [Open Build Ulindouin (Cancel)

Figure G.5 If Parameter Box

Ulliile Construct: 'ObJName'

Enter Test Enpresslon

[OK 1 i Open Build llllndoul 1 [Cancel 1

Figure G.6 While Parameter Box

For Construct: 'ObJName'

Indeu

Initial Ualue

® to douinto

Final Ualue

[OK 1 1 Open Build Ulindoui 1 [Cancel}

Figure G.7 For Parameter Box

73

Enter 6lobal Constants for "Untitled":

Identifier Ualue

;

;

S3 *

s •

;

;

[OK 1 [Cancel]

Figure G.8 Constants Parameter Box

Enter Local Types for "ObJOne":

Identifier Type

as

I OK 1 {Cancel 1

Figure G.9 Types Parameter Box

74

Enter Local Uariables for 'flnObJect':

Identifier Type

1 OK 1 [Cancel]

Figure G. 10 Variables Parameter Box

75

LIST OF REFERENCES

1. Hansen, W.R., "User Engineering Principles for Interactive Systems,"

Interactive Programming Environments , by D. Barstow, E. Sandewail

and H. Schrobe, eds., pp. 217-231. McGraw-Hill. 1984.

2. Apple Computer. Inc., inside Macintosh . Promotional Edition, 1985.

3. Gl inert, E.P., "Towards Second Generation Interactive, Graphical

Programming Environments," Workshop on Visual Languages ,

pp. 61-70, IEEE Computer Society Press, June 1986.

4. Gl inert, E.P. and Tanimoto, S.L., "PICT: An Interactive, Graphical

Programming Environment," Computer, v. 17, pp. 7-25. November

1984.

5. Frei, H.P., Weller, D.L., and Williams, R., "A Graphics-Based

Programming-Support System," Computer Graphics , v. 12, pp. 43-49,

August 1978.

6. Jacob, R.J.K., "A State Transition Diagram Language for Visual

Programming," Computer , v. 18, pp. 51-59. August 1985.

7. Witty. R.W.. "Dimensional Flowcharting." Software Practice and

Experience, v. 7, pp. 553-584. 1977.

8. Azuma, M.. Tabata. T.. Oki. Y.. and Kamiya. S., "SPD-- A Humanized

Documentation Technology," IEEE Transactions on Software Engineering .

V. 1 1. pp. 945-953. September 1985.

76

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station

Alexandria, Virginia 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School

Monterey. California 93943-5002

3. Department Chairman, Code 52 1

Department of Computer Science

Naval Postgraduate School

Monterey, California 93943

4. Curricular Officer, Code 37 1

Computer Technology Curricular Office

Naval Postgraduate School

Monterey, California 93943

5. Associate Professor Daniel L. Davis, Code 52vv 5

Department of Computer Science

Naval Postgraduate School

Monterey. California 93943

6. Associate Professor Bruce J. MacLennan, Code 52ml 2

Department of Computer Science

Naval Postgraduate School

Monterey, California 93943

7. LCDR Michael F. Farley 2

Patrol Squadron One

FPO San Francisco, California 96601

77

f-trP It— :

DTTDLEY KW^ LTBHATl?
-TT^RAOUATB SCHOOL

J
OALIFGRinA 93943-5008

Thesis
iV^

1F22556 Farley
ic.l A prototype visual

structure editor for
Pascal.

/

Thesis
F2253b Farley

c'i A prototype visual

structure editor for

Pascal.

