(a)

NAVAL POSTGRADUATE SCHOOL Monterey, California

Approved for public release; distribution unlimited
U222982

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER ${ }^{\text {a }}$ 2. GOVT ACCESSION NO.	3. RECIPIEN'S CATALOG NUMBER
4. TITLE (and Subtitle) Solving Set Covering Problems Using Heuristics with Branch and Bound	S. TYPE OF REPORT \& PERIOD COVERED Master's Thesis; September 1984 6. PERFORMING ORG. REPORT NUMEER
Kook Jin, Nam	8. CONTRACT OR GRANT NUMAER(s)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, California 93943	10. PROGRAM ELEEMENT. DROJECT, TASK AREA WORKUNTT NUMERS
11. CONTROLLING OFFICE NAME AND ADORESS Naval Postgraduate School Monterey, California 93943	12. REPORT DATE 13. SuMPEmben 1984 13. NUMEER OF PGES 57
14. MONITORING AGENCY NAME \& ADDRESS(II difterent from Controlling Office)	15. SECURITY CLASS. (of thita toport) Unclassified
	15. DECLASSIFICATION OOWNGRADIMG

16. DISTRIBUTION STATEMENT (Ol this Roport)

Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (of the abstract onfored in Block 20, if difforent from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Contfnue on reverse alde if necessary and fdontfly by block number)

Heuristic
Branch and Bound
Algorithm
Set Covering

Enumeration
Cutting Plane Partitioning Separation
20. ABSTRACT (Contfnue on reverge alde th noceseary and ldentlly by block number)

An algorithm based on simple heuristics is presented for an important class of all-binary integer linear programs known as the set covering problem. In spite of its very special form, the set covering problem has many practical applications. Optimal solutions to problems derived from these applications are difficult to obtain using known methods.

(20. ABSTRACT Continued)

Various solution techniques are investigated based on heuristic algorithms that obtain upper and lower bounds on the optimal solution value together with branch and bound enumeration. These solution techniques are effective on some problems. Computational results are reported for several largescale real-world problems and several artificial problems.

Afproved for public release; distribution unlimited.

Solving Set Covering Problems Heuristics with Branch and Bound
by

Submittedin partial fulfillment of the
requirfments for the degree of
MASTER OF SCIENCE IN OPERATIONS RESEARCH

> from the

NAVAI POSTGRADUATE SCHOOL September 1984

ABSTRACT

An algorithm based on simple heuristics is presented for an importart class of all-binary integer linear programs known as the set covering problem. In spite of its very special form, the set covering problem has many practical applications. Optimal solutions to problems derived from these afplications are difficult to obtain using known methods. Various soiution techniyues are investigated based on heuristic algorithrs that cbtain upper and lower bounds on the oftimal solution value together with branch and kound enumeration. These solution techniques are effective on some problems. Ccmputational results are reported for several large-scale real-world problems and several artificial problems.

TABLE OF CONTENTS

I. INTRCDUCTION 9
a. INTRODUCTICN 9
E. THE SET COVERING PRORLEM 10
C. USES OF SCF AND SPP 10
D. SOLUTION HETHODS FCP THE SCP 13

1. Cutting Planes 13
2. Branch and Bound 14
E. IMPLEMENTAIION 15
3. Introduction 15
4. Irput Data Format 16
5. Test Problems 17
II. BFANCH AND BOUND ENUMEFATION 19
A. INTRODUCTICN 19
B. FATHOMING CRITERION 20
C. SEPARATION AND BRANCHING 21
D. ALGORITHM AND EXAMPLE 22
6. Algorithm 22
7. Example 23
III. hEURISTIC SOLUTION TECHNIQUES 26
A. INTRODUCTICN 26
B. ADDITION HEURISTIC 25
C. DELETION FEURISTIC 28
D. COMPUTATIONAL RESULTS 30
IV. LCEER BOUNDS CN THE SCP 32
A. INTRODUCTICN 32
8. DUAL LP REIAXATION IOWER BOUND 32
C. EARTITIONING LOWER BOUND 35
D. KOVAC'S LCNER BOUND 37
E. COMPUTATICNAL PESULTS 38
V. CCMPUTATIONAL EXPERIENCE AND DIFFICUITIES 41
A. RESUITS 41
B. EXAMPLE 46
VI. CONCIUSIONS AND RECOMMENDATIONS 49
APPENDIX A: DATA FOEMAT FOR TRJCK ROUTING EXAMPIE 51
IIST CF FEFERENCES 52
INITIAI EISTRIBUTION IIST 57

LIST OF TABLES

1. Truck Routing Example 12
2. Problem Dimensions 18
3. Ccmputational Results of Upper Bounds 31
4. Computational Fesults of Iower Bounds 40
5. Ccmputational Fesults Compared with Previous Fiesults 43
6. Comparison of Various Solution Methods 45

IIST OF FIGURES

2. 1 Enumeration Iree for Truck Roating Example. . . 25
5.1

Method 2 on Eus
47
5.2

Method 4 on Eus 48

I. INTRODJCTION

A. INTRCDUCTION

Set Covering Problems (SCPs) comprise an important class or all-binary ($0-1$) Integer Linear Proyraus (ILPs). The SCP model is well-known and has many practical dppicatiors in diverse areas such as vehicle routing, facility location and capital budgeting. The set covering problem is a theoretically difficult problea in that it is NP-complete [Ref. 1]. However, there exist several methods for obtaining solutions to SCFs for quite large real-worid problems. In this study, heuristics together with branch and bound enumeraticn are tested as a solution method for solving several large-scale SCPs.

There are several reasons for using heuristics wit: kranch and bound instead of using cutting plare methods, Lp-Lased branch and Lcund, or scme other technique. First, not all researchers have access to jood large-scale I? systems on which to base cutting plane or brarch ard bound algorithms. Any ccapetent researcher should be able to program a heuristic-tased method with a modest amount of effort. The second reason for wanting heuristic-based methods is that more complicated techniques are surject to failure as a result of degeneracy, numerical instability and slowress. For instance, the systems bas€d on solving the LP relaxation, both cutting plane ard branch and bound, fail when the LPs are difficult to solve because of their size, or because of basis structures which are hard to invert, or because the Lp gives weak bounds. See [Ref. 2] and [Ref. 3].
B. THE SET COVERING FROBIEM

The SCP is an integer program of the form:
(1) $\operatorname{MIN} \sum_{j=1} c_{j} X_{j}$

$$
\begin{align*}
& \text { S.T. } \sum_{j=1}^{n} a_{i j{ }_{j}} \geq b_{i} \\
& x_{j} \text { binary } i=1, \ldots, m \tag{2}\\
& \text { where each } a_{i j}=0 \text { or } 1 \\
& b_{j}>0 \text { and integer } \\
& c_{j} \geq 0 .
\end{align*}
$$

A mirimal cost set of columns must be selected from the coefficient matrix A such that the right-hand side $上$ is covered or satisfied. Typically, right-hand-side vaiues are all 1s. Closely related to the $S C P$ is the set partitioning probl $\in \mathbb{M}(S P P)$ where (2) is replaced by (4).
n
(4)

$$
\sum_{j=1} a_{i j} x_{j}=b_{i}, \quad i=1, \ldots, m
$$

The SPP is the same as the SCP except that each row i must be covered exactly b_{i} times instead of at least b_{i} times.
C. USES OF SCP AND SFP

Set covering problems and set partitioning problems have been studied widely because of their many practical applications and simple binary structure. Bausch [Ref. 2] and Ealas and Padberg [Ref. 4] give a large collection of references to applications which are given below for completeness along with some more recent references. only references 6,7,9,16 and 25 are unsighted.

A truck routing froblem will be described here for the purpcse of illustrating both the SCP and the SFP. The SCP example is đescribed first. The headquarters of the first Corps of the Republic of Korea Army has 3 divisiors to supply using 7 possible delivery routes. It is assumed that
the cost of each route is measured in dollars here, but costs could also be measured in time, miles travelled, trucks used, etc. The incidence matrix A which is shown in Table 1 consists of 1 and $0 s$ such that
$a_{i j}=\left\{\begin{array}{l}1 \text { if route } j \text { goes through division i } \\ 0 \text { otherwise. }\end{array}\right.$

A set of truck routes of minimal cost is to be determine f in such a way that at least one truck route should go through each supply point.
This problem is an SCF
where $A=\left\{a_{i j}\right\}$

$$
\begin{aligned}
& \underline{\mathrm{b}}=\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) \\
& \underline{\mathrm{c}}=\left(\begin{array}{llll}
7 & 8 & 10 & 1
\end{array}\right)^{\mathrm{T}} \\
& \hline
\end{aligned}
$$

Variable x_{j} has the value 1 if truck route j is in the
minimum cost set of routes and it has value 0 otherwise. The oftimal solution is

$$
\underline{x}=(1,0,1,0,0,0,0)^{T}
$$

with objective value 17. The solution of the above problem using branch ard bound will be demonstrated ir chapter 2.

Suppose, on the cther hand, that trucks are picking up supplies and that the net cost of route j is given by $c_{j}=$ cost of route j - value of suppiies at all points in route j. Kith this cost structure, no overcovering of any row may be allowed and this problem becomes an SPP. The oftimal solution for the SPP is

$$
\underline{x}=(1,0,0,0,1,0,1)^{T}
$$

with objective value 18. Since this SPP is a restricticn cf the previous SCP, it is to be expected that the optimal soluticn to the $S P P$ will be no better than the optimal solution to the SCP.

D. SCIUTION METHODS FOR THE SCP

1. Cutting Plan $\in \subseteq$

Cne method of solving a general ILP is by attempting to $d \in f i n \epsilon$ the optimal integer solution of the ILP as an extreme point of a convex polyhedron generated by the original linear constraints plus some additional constraints called "cuts." The technique is applied to the SCP by first solving the linear relaxation:

$$
\text { MIN } \underline{C}
$$

(5) S.I. AX $\geq \underline{b}$

$$
\underline{x} \geq \underline{0} .
$$

Solve this relaxation. If the solution is integer, then the solution must be optimal. Otherwise, derive a valid cut,
i.e., a linear constraint which is satisfied by all integer solutions to SCP, but which is violated by the current noninteger solution. Ade this contrairt to the proulem and solve the new restricted problem. Continue solving the restricted linear programs and adding cuts until either an integer solution is obtained or numericai difficulties force a halt tc the process.

2. Eranch and Bound

Branch and bound is an optimization technigue that uses a tree search enumeratior approach to the solution of a general ILP:

MIN CX
(6) S.S.AX $\geq \underset{\underline{E}}{\underline{L}}$

$$
\begin{aligned}
& \underline{x} \geq 0 \\
& \underline{x} \text { integer. }
\end{aligned}
$$

Following Garfinkel [Ref. 41], denote the set of feasible solutions to (6) by

```
S = {\underline{x}|A\underline{x}\geq\underline{b},\underline{x}\geq\underline{0},\underline{x}}\mathrm{ integer }
```

Instead of attempting to solve directly over S, the set is successively divided into smaller sets which have the property that any optimal solution must be in at least cne of the sets. This is called separation and is often illustrated by an enumeration tree with its root node at the tof of the tree and with restricted subproblems below the root (See Figure 2.1). Each node of the enumeration tree corresponds to a subproblem of (6). That is, node k is the probl $\in \mathbb{M}$
(7) MIN CX, \underline{x} is in S_{k} where S_{k} is a subset of S.

In a binary ILP, S_{k} is S with additional constraints which
fix certain variables to 0 or 1. As the enumeration proceeds further down the enumeration tree, the subsets become frogressively smaller until it finaliy becomes possifle to solve (7) exactly or at least to determine whether cr not it contains a potentially optimal solution. Subproblems are discarded or "fathomed" when (7) is solved or when it is determined that a subset cannot contain a solution better than the best known solution to (6). Upper and lower hounds on the optimal solution are calculated for each sulproblem allowing for more efficient fathoming of nodes. The success or failure of branch and bound is largely dependent on the accuracy of these bounds.

Eranch and bcund algorithms are often primal in the sense that they proceed from one feasible solutior to another until optimality is verified. In fact they may find optimal or near optimal solutions at an early stage in the enumeration process and spend the majority of the time veriEying optimality by improving bounds.

E. IMPLEMENTATICN

1. Introduction

Most large-scale mathematical programing froblems have special structure which is exploited in the implementation of mathematical frogramming solvers. Examples of such special structure are sparsity of the constraint matrix and the frequent occurrence of somi coefficiert values. To take advantage of this structure, the computer programs written for this study are written as subroatines embeddeł in a large-scale optimization test bed called the X System or simply $X S$ [Ref. 42]. XS is designed to solve linear programming problems, 0-1 programming problems, ronlinear frograming problems and mixed 0-1/linear/ronlinear programming problems. $X S$ uses sparse matrix techniques
common to many mathematical programming systems. A more specialized system using binary vectors to represent the A matrix [Ref. 43] might be faster for some problems but less flexible.

2. Input Data Format

In this study, to make data manipulation easy and convenient, the data format described by Bausch [Ref. 2] is used since this format has many advantages for large-scale problems. The advantages are as follows.
a. It is compact.
b. Storage requirements are easily calculated.
c. Data generaticn problems are simplified.
d. Cciumn manipulation of data input is made easy since all information for each column is contiguous.
e. This column format is easily gererated by commercially available (MPS) problem generation systems. The data input fcrmat consists of three sets of card images:
a. Proklem dimensions. Format (3I6) (One Card)
$M \quad=$ Number of rows
$\mathrm{N} \quad=$ Number of columns
NZEL = Number of non-zero elements.
t. Constraint ranges. Format (2A4, 2216.8) (il Cards)

IR = Row index i
$R L=$ Low \quad range limit b_{i}
$\mathrm{RU}=\mathrm{Upp} \in \mathrm{r}$ range limit (always (∞).
C. Column Data. (N or More Cards) (2A4, F14.3, 10I5)
$J C=$ Column index j
$C=$ Column cost coefficient c_{j}
NCE = Number of non-zero elements in the column IR row addresses of non-zero coefficients.
If $N C E$ is gredter than 9, additional column cards are needed to hold the row addresses for that
column. The format for additional colum cards is (20X, 10I5).
An example of this data format is shown in appendix f for the truck routing exarfle of Table 1.

3. Iest Problems

Eight test froblems are evaluated in this thesis. These froblems consist of four real-world probl $\in \mathbb{m}$ (American, Bus, Tiger and Truck), and four artificial problems (Steiner1, Steiner2, Steinr1a and Steinr2a). Steirer1 and Steiner2 are problems devised in [Ref. 49] and are guaranteed to require extensive enumeration when using ip-rased rranch and bound since the Lp bounds are so weak. Steinrla and Steinr2a are Steiner 1 and Steiner2 transposed, respectively.

Some of the problems are, in fact, pure SPPS. However, we have converted these problems irto SCPs reasoning that the derived SCP should still be representative of a true SCP. The characteristics of these proklems are shown in Table 2 where NZEL is the total number of nonzeros in the constraint matrix and NCE is the average number cf nonzeros in each column. All these protlems except Truck are typical set covering problems which have right-hand sides equal to 1. The Truck problem has a general right-hand side. All of these test problems were run on an IBM3033 under VM/CMS. Computatior times reported ir the following chapters are accurate to the number of decimal flaces shown.

TABLE 2
Eroblem Dimensions

Zroblem	Rows	Columns	NZEI	NCE	Model
American	95	9318	57293	6.0	SPP
Bus	56	530	3339	6.3	SPP
Steiner1	117	27	352	13.0	SCP
Steiner1A	27	117	351	13.0	SCP
Steiner2	330	45	991	22.0	SCP
Steiner2A	45	330	991	22.0	SCP
Tiger	160	636	4134	6.7	SPP
Truck	239	4752	30075	8.0	SCP

A. INIRCDUCTION

In this chapter we introduce "branch and bound" enureration which will be used in chapter 5 to solve SCPs. Branch ard bound is an optimization techniyue that uses tree erumeration together with upper bounds and lower bcunds on the objective functicn. These bounds help to accelerate the fathoming process and reduce enumeration. In this chapter, we descrite branch and bound in terms of a minimizing binary IIP, and discuss the importance of good bounds and good kranching strategies. In a binary ILp, a separation is effected $5 y$ fixing a binary variatle to its possible values, 0 and 1. Thus, every separation of a problem is, in fact, a partition of the problem into $t w o$ subproblems.

The discussior of branch ard bound is limited to a "depth-first" search or exploration of the enumeration tree since this is the method that was used in this research. More general techniques are possible (See Garfinkel an Nemhauser [Kef. 43].) but these all require substantially more storage and general overhead. Most commercial branch and bound packages utilize a depth-Eirst search. Lepth-first search simply means that when a separation is defined, one of the nodes created by the separation is immediat $\in l y$ selected to $L \in$ the next subproblem, and wher a node is fathomed, the enumeration always backtracks to the most recently created live node which is the "twin: of a node already explored.

There are two imfortant parts of any branch and bound algorithm. First, good upper and lower bounds must be obtained on the optimal solution. The closer the bounds are
to the optimal solution, the fewer nodes (subproblems) must be enumerated. There exist several ways of obtaining upper and iower bounds on an SCP. Methods for obtaining computationally simple lower bourds will be described in Chapter 4. Upper bounds on the oftimal solution are given by heuristicaliy obtained feasitle solutions to the ILP. yeuristic solution methols for the SCP will be described in detail in the next chapter.

The second important part of the branch and tound algorithm is the method of determining which variable to fix first when a separation is defined at a node in the tree and whether that variable should be fixed to or 0 . This selection process is called a "branching strategy." Branching strategies are defendent on the methods being used for obtaining upper and lower bounds and the actual strategies to be used will be discussed in chapter 5. It seems obvious that if a good guess can be made as to khich variables must te in the optimal solution, ther fixing one of those variables first to f would be a good branching strategy. Of course, guessing is very difficult; otherwise we would have guessed the solution to the whole problem. Another likely strategy may be to select the ieast attractive variable in the incumbent and set that variable to 0 . Unfortunately, as will be seen in chapter 5, no single rule seems to work well on all problems and a certair amount os' case-上y-case experimentation is necessary.

B. FATHOMING C? ITERICN

To accelerate the enumeration process and save computing time we need a criterion to decide whether or nct a subproblem should be discarded at a certain point of the algorithr. Suppose that several steps of the enumeration have already been ferformed and that a subproblem at a
particular node in tre tree is being considered. Let BEST denote the smailest feasible objective value found thus Ear in the enumeration. Clearly, BEST is an upper bound on the optimal solution to the IIP. The feasibie solution correspondirg to BESI is called the "incumbent."

Now, let CLBND denote a lower bound on the optimal solution to the IIP given the restrictions at the current node. CLBND is defined to be infinity if no feasible soluticn to the IIP can be found given the current restrictions. Iet CUBND denote a upper bound on the optimal objective value corresponding to a feasible solution to the If? giver the current restrictions. If BEST > CUBND, let BEST = CUBND and let the corresponding solution be the new ircumbent. Now, the efficiercy of branch and bound enumeration is kased on the fact that explicit enumeration need not be extended kelow the current node if the "fathoming criterion" is met:

Fathoming critericn: CLBND \geq BEST.
For prcblems with integer costs, fractional values for CLBN should $b \in$ rounded up to the nearest integer.

From a computaticnal viewfoint, it is useful to split the above test into two tests, however. First, compute CLBND and test if CLBND \geq BEST; if it is, the node is fathomed. If not, only then compute CUBND, update BEST if appropriate and refeat the test. \quad his avoids some unnecessary computaticn of upper bounds.

C. SEPARATION AND BRANCHING

"Branching" describes the process whereby an unexplored subproblem is selected for expioration, i.e., upper and lower bounds are ccmputed for the node and the node is either fathomed or separated. "Separation" is the process whereky the current subproblem is separated into two or more
subsutproblems, at least one of which must contain the optimal solution to the current subproblem if such a solution exists.

In a binary L using depth-first search, tranching ard separation are intertwined. A separation is always a partition based on fixing a specific variable to 0 or to 1. After a separation cne of the live nodes just created must be immediately selected for branching. If a node is fathomed, the most recently created live node must be selected for exploration.

D. AIGOBITHM AND EXAEPLE

1. Algorithm

The following branch and bound algorithm uses depthfirst exploration of the enumeration tree. The logic is exactly that used in the programs written for this thesis.

Algorithm: Depth-First Branch and Bound
SIEP 0. (Initialization)
Let $\operatorname{BEST}=\infty, \operatorname{STACK}=\phi$.
SIEP 1. Compute CUBND given restrictions defined by STACK.

If CIBND \geq BEST, go to step 5.
STEP 2. Compute CUBND given restrictions defined by STACK.
If CUBND < BEST, then let BEST = CUBND and save incumbent.
If CLBND \geq BEST, go to step 5 .
STEP 3. (Branching) Select an unfixed variable j to fix and determine whether to fix it to 0 or 1.
STEP 4. Put vertex j in STACK with information indicating whether it is fixed to 0 or 1 and that its twin has not yet been explored. Go to step 1.

STEP 5. (Backtrack)
If SIACK $=$, then go to step 7.
STEP 6. Remove j from top of STACK.
If its twin has been explored, go to step 5 . Otherwise, put j back on STACKfixing j to the complemert of its previous value and noting that its twin has already been explored.
Go to step 1.
STEP 7. Terminaticn
If BEST $=$ Co, there exists no feasible solution. Otherwise, current incumbent is optimal.
End of Algorithm: Branch and Bound

2. Example

The example below illustrates the above algorithm on the SCP defined in Table 1. Lower bounds on the solutions at each node are obtained by finding a feasible soluticn to the dual of the $L P$ relaxation of the $S C P$ (See section E in Chapter 4.). The upper bounds are obtained by using an "addition heuristic" which successively adds columns to a partial cover until a complete cover is ottained (See section C in Chapter 3.). Separation is effected by randomly selecting a variable x_{j} amonj all variables not in the current soluticn obtained bit the addition heuristic. The rranch corresponding to $\mathrm{x}_{\mathrm{j}}=1$ is explored first. The enumeration tree is shown in Figure 2. 1.

$$
\begin{aligned}
& \text { a. Initialize: } \operatorname{EEST}=\infty \\
& \text { b. Node 0: CIBND }=17.0 \\
& \text { CLBND < BEST so continue. } \\
& \operatorname{COBND}=18.0, \underline{X}_{0}=(1,0,0,0,1,0,1) \\
& \text { CUBND < BEST so let BEST }=\text { CUBND and } \underline{x}_{0} \\
& \text { becomes the incumbent. }
\end{aligned}
$$

CIBND < BEST so variable x_{2} is selected
for branching. Fix variable x_{2} to 1 first.
c. Node 1: Given that $x_{2}=1$, CLBND $=25.0$.

Since CLBND \geq BEST, backtrack to the twin
of this node which has not been explored.
d. Ncde 2: Given that $x_{2}=0$, CLBMD $=17.0$.

CLBND < BEST so continue.
CUBND $=18.0$. No improvement over incumbent.
Since CLBND < BESF, select x_{5} for branching.
Set $x_{5}=1$.
E. Node 3: Given that $x_{2}=0$ ard $x_{5}=1, \operatorname{CLBND}=18.0$.

Since CLBND \geq BEST, backtrack to the twin
of this node which has not been explorec.
f. Node 4: Given that $x_{2}=0$ and $x_{5}=0$, CLBND $=17.0$.

Since CLBND < BEST, continue.
$\operatorname{COBND}=17.0$ for ${\underset{-}{4}}_{4}=(1,0,1,0,0,0,0)$.
Since CUBND < EEST, let BEST = CUBND and
let X_{4} be the new incumbent.
Since CIBND \geq BEST, backtrack.
No live nodes exist, so the current incumbent X_{4} is optimal with objective value 17.0 .

Note: Pairs are (CLEND, BEST)

Figure 2.1 Enumeration Tree for Truck Routing Example.

III. HEDEISTIC SOLOTION TECBNIQOES

A. INTRCDOCTION

Two rasic heuristic techniques exist for obtaining good feasible solutions to SCPs: "addition" heuristics and "deletion" heuristics. These two heuristics are used in this study for the purpose of generating solution sets and upper kouncs. These heuristics are not guaranteed to solve the SCP optimally but can be used to get good upper bounds or the oftimal solutions which are essential in the branch and bound enumeration. Feasible solutions to the SCP are easily oltained because of the SCP's greater than or equal to constraints and nonnegative constraint matrix. Computational results are given ir section D.

B. ADDITION HEURISTIC

An addition heuristic begins with the infeasible solution $\underline{x}=\underline{0}$ and successively sets to 1 that variable x_{j} which
 associated with x_{j} is c_{j} / p_{j}, where p_{j} is a penalty which ir some way reflects the amounts of infeasibility currently being contributed by $\mathrm{x}_{\mathrm{j}}=0$. The addition heuristic can be stopfed when a feasible solution is obtained but it is possible that the cover produced is not minimal ard a second phase should be added which deletes any columns in the cover which are redundant.

Algorithm: Addition Heuristic
Input: The $S C P$ matrix and vectors A, \underline{c} and \underline{b}.
Cutput: Upper bound to $S C P$ solution.
STED O. "Initialization"
$I=\{1,2, \ldots, \mathbb{m}\}, J=\{1,2, \ldots, n\}$,
$J^{\prime}=\dagger, \underline{E^{\prime}}=\underline{b}, \operatorname{cUBND}=0$.
For each column j $\in J$
Compute a penalty $p_{j}>0$.
Let $h_{j}=$ number of nonzero in column j.
STEP 1. If $\underline{b}^{\prime}<\underline{0}$ or J is empty, go to step 3. Otherwise, let

$$
\begin{aligned}
& j_{0}=\underset{j \epsilon J}{\operatorname{argmin}} \frac{c_{j}}{p_{j}} \\
& J=J-j_{0} \\
& J^{\prime}=J '+j_{0}
\end{aligned}
$$

$$
\text { CUBND }=C U B N D+C_{j} \cdot
$$

STEP 2. FOr each i such that $a_{i j_{0}}=1$
Let $\mathrm{E}_{\mathrm{i}}=\mathrm{b}_{\mathrm{i}}-1$.
If $b_{i}^{\prime}=0$ (update column sums)
For each j such that $a_{i j}=a_{i j}=1$,
Let $h_{j}=h_{j}-1$.
If $h_{j}=0$, let $J=J-j$.
If $\underline{b}^{\prime} \leq \underline{0}, ~ g o ~ t o ~ S T E P ~ 3 . ~$
Otherwise,
For each column j $\in J$
Update penalties p_{j} if necessary.
Go to step 1.

SIEP 3. "Generating minimal cover"

$$
\begin{aligned}
& \text { For each each } j \in J^{\prime} \\
& \text { If column } j \text { is redundant } \\
& \text { L } \in t \text { CUBND }=\operatorname{CUBND}-c_{j} . \\
& \text { I } \in t J^{\prime}=J^{\prime}-j .
\end{aligned}
$$

STEP 4. "Termination"
Halt. • If J' is a cover, CUBND is an upper kound on the SCF.
Otherwist, no feasible solution exists.
End of Addition Heuristic
Two different penalty functions have beer tested with the above addition heuristic: $p_{j}=h_{j}$ and $p_{j}=k_{j}$ where k_{j} is the initial column sum (number of nonzeros in the column) which is never updated. Kovac [Ref. 44] suggests using k_{j}
as part of a heuristic for obtaining both upper and lower bounds on the optimal solution to an $S C P$. The results obtainẻ using this fenalty are not reported here, however, since they are so poor. It should be noted that more complicated penalty functions could certainly be defined such as $p_{j}=\log \left(h_{j}\right)$. In addition, instead of selecting the minimum c_{j} / p_{j} the minimum of a more general functional form $g\left(c_{j}, F_{j}\right)$ could be selected.

C. DELEIION HEORISTIC

A deletion heuristic begins with the feasible solution $\underline{x=1}$ and successively sets to 0 that variable X_{j} which myopically minimizes $\in f$ fective frofit c_{j} / p_{j}. Here c_{j} is some
penalty reflecting the amount of overcoveriny which column j is contributing. The deletion heuristic stops when no a ¥ditional variables can be set to 0 without creating an infeasibility implying that the cover obtained is minimal. The following algorithm carries out the above ideas.

Algorithm: Deletion Heuristic
Input: The $S C P$ matrix and vectors A, \underline{c} and \underline{b}. Cutput: Upper bound to SCP.
STEP 0. "Initialization"
$I=\{1,2, \ldots, m\}, J=\{1,2, \ldots, n\}$,
n
$J^{\prime}=\emptyset, \underline{k}^{\prime}=\underline{b}, \operatorname{CUBND}=\sum_{j=1} c_{j}$
For each ifc,
let $h_{i}=$ number of nonzeros in row i.
For each $j \in J$,
let $h_{j}=n u m b e r$ of nonzeros in column.
compute a penalty $p_{j}>0$.
STEP 1. If $\underline{b}^{\prime}<\underline{0}$ or J is empty, 30 to STEP 4.

$$
j_{0}=\underset{j \in J}{\operatorname{rgmax}} \frac{c_{j}}{p_{j}}
$$

STEP 2. FOr each i such that $\mathrm{a}_{\text {jj }_{0}}=1$,

$$
\text { If } b_{i}^{\prime}=h_{i} \text { go to STEP } 4 .
$$

STEP 3. J = J $-j_{0}$
CUBED $=C$ OBAD $-\mathrm{C}_{j_{0}}$
For each row j such that $a_{i j}=1$.
$\operatorname{let} \mathrm{h}_{\mathrm{i}}=\mathrm{h}_{\mathrm{i}}-1$.
Go to STEF 1.

SIEP 4. FOr each $\operatorname{aij}_{0}=1$ let $J^{\prime}=J^{\prime}+j$

$$
\text { For each } a_{i j}=1 \text { let } b_{i}^{\prime}=b_{i}^{\prime}-1
$$

$$
\text { If } b_{i}=0 \text {, update column sum } h_{j} \text { letting }
$$

$$
J=J-j \text { for any } h_{j}=0
$$

$$
\text { If } \underline{b} \text { ' < } \underline{0}^{\prime} \text { go to SIEP } 6 .
$$

STEP 5. For each column jeJ.
Update penalties p_{j} if necessary.
Go to STEF 1.
STEP 6. "Termination"
Halt. If J^{\prime} is cover, CUBND is an upper bound on the SCE.
Otherwise, no Feasible solution exists.
End of Algorithm Deletion Heuristic
The deletion heuristic has only been tested using $\mathrm{p}_{j}=\mathrm{h}_{\mathrm{j}}$. The comments on the fossible use of more general functional forms in the addition heuristic are also valid here, but have not Leen tested.

D. COMPOTATIONAL RESULTS

An addition heuristic and a deletion heuristic have been coded for purposes cf comparisor. The results are sumarized in Table 3. As can be seen, the addition heuristic is faster than deletion heuristic, but the upper bound from the addition heuristic is not as good as that oftained by the deletion heuristic except for problems Steiner1A and Truck. Although these results tend to indicate that the deletion heuristic is better, the true test of usefulness in solving SCPs will have to wait until chapter 5 where the heuristics are embedded in a branch and bound algorithm.

TABLE 3

Computational Results of opper Bounds

Prcbiem	Adation		Deletion	
	Value	Iime	Value	Iime
American	3.532	0.35	3.364	35.13
Bus	5.253	0.03	5.192	0.64
Steiner1	19.0	0.00	19.0	0.00
Steinria	9.0	0.00	10.0	0.00
Steiner2	32.0	0.00	30.0	0.01
Steinr2a	16.0	0.00	16.0	0.24
Tiger	59.264	0.11	59.173	0.92
Truck	367.64	1.19	389.62	53.35

The above heuristic techniques are one-pass methods and are the crly methcds implemented in this research. Multiple-pass methods exist and are mentioned here for completeness. The most straightforward multiple-pass method is called the "1-opt" method [Ref. 51]. This method first uses an addition or deletion heuristic to obtain a minimal cover. Then, each column in the current solution is checkea agairst the columns not in the solution to determine if a one-for-one exchange can be made which maintains a feasible cover while reducing total cost. The 1 -opt method is an example of an "exchange heuristic." The basic idea can be extended to a k-way exchange resulting in the "k-opt" method.

IV. IOHER BOONDS ON IHE SCP

A. I\#TRCDOCTION

Several methods of finding lower bour ds for solutions to the SCP are described in this chapter. Getting good lower bounds on the optimal solution to an SCP is critical if optimal solutions ar \in to be ortained using branch and bound. Lower bounds are also necessary if the accuracy of nonoptimal sclutions is tc be bounded when branch and bound fails to find the optimal solution. There aremany possible methods of obtaining lower bounds on the SCP, all based on solving some relaxation of the the associated ILf. Several methods have been coded and are compared to decide which method should be employed within the branch ard bound enumeration. Although these bounds have not been used for solving any SPPs, it should be noted that they are all valid for the SPP since the SCP is a relaxation of the SPP.

A feasible solution to the dual of the $1 P$ relaxation of the SCP frovides one easily obtainable lower bound. Also, a column partitioning method is given in which the SCF is partitioned into small SCPs which can be solved exactly and whose solution values may be summed to give a lower bound. Another lower bound which is tested is the sum of all of the minimal row covering fractions. All these methods are coded and computational results compared in section E.

B. DOAL IP REIAXATICN LORER BOUND

One cbvious relaxation of the $S C P$ which can be solved to obtain a lower bound is the linear programming (LP) relaxation. This technique has been used successfully in many cases [Ref. 45]. But a problem with the Ip lower bound
is that it may be difficult to solve the IPs associated with many SCPs. (See for example Bausch [Ref. 2] and Salkin and Koncal [Kef. 3]. , This is true because the Lp may be guite large, highly degenerate and have a basis structure which is numerically unstable. However, it is possible to get a quick lower bound on the SCP by just finding a feasible soluticn to the dual of the IP relaxation of the $S C P$ since,

$$
W\left(I P_{D}\right) \leq W *\left(L P_{D}\right)=V^{*}\left(L P_{P}\right) \leq V^{*}(S C P)
$$

 to the dual of the LP relaxation, $W^{*}\left(L P_{D}\right)=$ oftimal value of the dual $I P$ relaxation, $V *\left(L P_{P}\right)=$ optimal value of primal $I p$ relaxaticr, and
$v^{*}(S C P)=$ cFtimal value of the SCP.
Letting 1 denote a row vector of ones, the dual to the $L p$ relaxation of the SCF is

$$
\begin{array}{ll}
\max & \underline{b}^{\underline{T}} \underline{u}-\underline{v} \\
\text { s.t. } & A^{T} \underline{u}-\underline{v} \leq \underline{c} \\
& \underline{u} \geq \underline{0}, \underline{v} \geq \underline{0} .
\end{array}
$$

The dual IP looks very similar to the SCP itself if the dual variables v are set to zero, and a simple method for obtaining a feasible solution can be devised in a way that is sirilar to the greєdy addition heuristic for the SC?.

Algorithm: Dual LP Relaxation Lower Bound (DLPRLB)
Input: SCP coefficient matrix and vectors A, C and E.
Cutput: Lower bourd CIBND to the SCP
STEP 0. "Initialization"
CLBND $=0$
$I=\{1,2, \ldots, \mathbb{T}\}, \quad J=\{1,2, \ldots, n\}$
For each $i \in I$, let $h_{i}=$ number of nonzeros
in row i.
STEP 1. If I is empty, go to STEP 5. Else, let

$$
\begin{aligned}
& i_{0}=\underset{i \in I}{\operatorname{argmax}} \frac{b_{i}}{h_{i}} \\
& I=I-i_{0}
\end{aligned}
$$

$\operatorname{SIEP} 2 \cdot \mathrm{C}_{j_{0}}=j:{\underset{i}{i n}}_{\mathrm{a}_{0}}^{i n}=1 \quad c_{j}$

$$
J=J-j_{0}
$$

STEP 3. CLBND $=C I B N D+c_{j}{ }_{0}{ }_{i}$
STEP 4. FOr each row i such that a $_{\text {jj }}=1$,
For each column j such that $a_{i j}=1$, Update cost coefficients $c_{j}=c_{j}-c_{j}$

Fepeat STEP 1.
STEP 5. "Termination"
Halt. CIEND is a lower bound on the SCP.
End of Algorithm DLPEIB
At each iteration of the algorithm, dual variable ${ }_{i}$ would be set to $\mathrm{c}_{\mathrm{j}_{0}}$. The actual values of the dual
variables need not be retained, however, since the value of the dual objective function is just $b^{\top} u$.
icy [Ref. 45] gives a somewhat more complicated method for finding a feasible solution to the dual relaxation of the SCP and this is tested along with the method described above.

C. PAFTITIONING LOGEE BOOND

Marsten [Ref. 50] gives a method for finding a lower bound on the SCP by solving subproblems of the SCP defined on certain partitions of the coefficient matrix. It is easier tc describe the method, however, ir terms of a mazimizaticn froblem.

Erown, McBride and Mood [Ref. 46] give a way to calculate an upper bound using a partition of the columes for a problem of the form:
$\begin{array}{ll}\text { MAX } & \frac{C X}{} \\ \text { S.T. } & A x \leq b\end{array}$ x binary.
They use the bound fcr estimating the size of the maximum embedded generalized network in an lP constraint matrix where $\underline{c}=1, \underline{b}=2$, and A is the transpose of the $0-1$ incidence matrix associated with an LP constraint matrix. Their bound is found as follows.
Iet A_{1} and A_{2} be a partition of the columns of A and $l \in t z$, z_{1} and z_{2} be the sclution of the maximization problem on $A_{1} A_{1}$ and A_{2} respectively. Then, $z \leq z_{1}+z_{2}$.
If A, \quad is intelligently chosen, $\quad z_{1}$ can be computed exactly. Then, A becomes A_{2} and the partitioning scheme is recursively repeated untii z_{2} can be easily solved also.

The SCP can be converted to a maximization problem by substituting variables $\underline{1-\underline{y}}$ for \underline{x} and multiplyiny the objective function by -1. Thus, it is not hard to see that a lower bound on the SCP can be ottained using the above method. Of course, the method can be applied directly without making the substitution. The partition of the columns
A_{1} is created with respect to an arbitrary rowi. The
columns of A, are those columns of row i containing nonzeros. The minimum cost among those cost coefficients contrirutes an additive term to the lower bound. The variabies included in the partition are never considered again. and all rows with nonzero intersections in the partition are also never considered again.

Algorithm: Partitioning Lower Bound
Input: SCP coefficient matrix and vectors A, \underline{c} and $\underline{\text { e. }}$ Cutput: Lower bound CLBND to the SCP
STEP O. "Initialization"
$I=\{1,2, \ldots, m\}, J=\{1,2, \ldots, n\}$
For each $i \in I$, let $r_{i}=$ number cf nonzero in row i

SIEP 1. If I is empty, go to step 4.

$$
\begin{gathered}
\text { Let } i_{0}=\underset{1 \in I}{\operatorname{argmin}} h_{i} \\
I=I-i_{0}
\end{gathered}
$$

SIEP 2. (Find the $\mathrm{b}_{\mathrm{i}_{0}}$ minimum c_{j} in row i_{0}.)
Let $j_{0}=\underset{j: a_{i} j}{\operatorname{argmin}}=1 c_{j}$.
Let $C L B N D=C L B N D+{ }_{j_{0}}$.
Let $c_{j_{0}}=\infty$
Let $b_{i_{0}}=t_{i_{0}}-1$.
If $\mathrm{b}_{\mathrm{i}_{0}}>0$, go to step 2 .
STEP 3. For each j^{\prime} such that $a_{i_{0}}=1$.
For each i such that $a_{i j}=1$

$$
\begin{aligned}
& \text { Iet } b_{i}=b_{i}-1 \\
& \text { If } b_{i}=0, \text { let } I=I-i .
\end{aligned}
$$

Go to step 1.
STEP 4. "mermination"
Halt. CIEND is a lower bound to the SCP.
End of Algorithm Partitioning Lower Bound
D. KOVAC'S LOWER BOUND

Consider the basic model of the SCP with all right-handside values equal to 1.
(8) $\quad \operatorname{MIN} \sum_{j=1} c_{j}{ }^{x}{ }_{j}$
n

$$
\begin{array}{rl}
\text { S.T } \sum_{j=1} a_{i j} x_{j} \geq 1 & i=1, \ldots, \mathrm{~m} \\
x_{j} \text { binary } & j=1, \ldots, n .
\end{array}
$$

The Eollowing lemma [Ref. 44] proviles a lower bcund for the above SCP.

Lemma Denote the optimum of froblem (8) by z^{*}
then
(9) $\quad Z^{*} \geq \sum_{i=1}^{m} f_{i}=F$
where f_{i} is the minimal covering fraction of row i :
$f_{i}=M I N\left\{r_{j}^{0} \mid 0<j \leq n, a_{i j}=1\right\}$.
(Proof) Define the ficllowing new problem.
(10) MIN $\sum_{j=1} \sum_{k=1} r_{j} Y_{j k}$

$$
\begin{aligned}
& \operatorname{S.r} \sum_{j=1}^{n} \sum_{k=1}^{m} g_{i j k} Y_{j k} \geq 1 \quad i=1, \ldots, m \\
& y_{j k} \text { binary } j=1, \ldots, n, k=1, \ldots, m \\
& \text { where } g_{i j k}= \begin{cases}a_{i j} & \text { if } j=k \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

To any feasible solution x of the SCP, there corresponds a solution of problem (10) in such a way that the objective function values are equal. Specifically, for each $x_{j}=1$. $y_{j k}=1$ for all k. On the other hand the minimum of problem (10) is obviously F. This proves the statement (9) of the lemma.

It is easy to extend the kovac bound to problems with general right-hand-sides ky using

$$
F=\sum_{i=1}^{m} b_{i} f_{i}
$$

E. COMPUTATIONAL RESULTS

Computational results for the lower bounds described above are reported here for all the test problems (see Table 4. "D NR indicates did not run.). It is not clear that the tightest lower bound for the complete problem will perform the best in the ranch and bound enumeration, but some posifive correlation is to be expected. The computational speed of the bound is also a consideration in branch and bound and some increase in speed may be traded for a loss ir accuracy. Thus, the results given here are a guide to which bound will

Le most fffective in the branch and bound algorithal tut only testing with that aigorithm can determine true effectiveness. The dual LP relaxation method (DLPRLB) appears to be the best in the problems Bus, Steiner1, Tiger and American. Actually, both DiPRIB and Hey's methol do outstandingly well on Bus. Kovac's heuristic appears to be superior to the cther bounds in fruck, Steinr1a, Steiner2 and steinr2a. For Steinrla and Steinr2a, the bounds are tight indicating that if good heuristic solutions can be obtained, the branch and bound algorithm should terminate very quickly.

ワ. COMPDTATICNAL EXPERTENCE AND DIFFICDLTIES

A. RESUIIS

All of the corfutational results reported in this secticn are for SCPs. The algorithms performed very well on some of the problems rut not on the others. At first, small test problems were used to check the correctness of the algorithas. All algorithms worked weil on these small probiems. The algorithms were then tested on the eight frcblems described in chapter 1. To solve these problems, we have used five methods to see which method is more effective than the others. The descriptions of the methods follow.

```
Method 1: Lower bcund: Dual IP relaxation.
    Upper bound: Addition heuristic.
    Separation: \(j_{0}=\operatorname{argmin} c_{j} / h_{j}\) among all
        \(x_{j}=1\) in current solution.
    Branching: \(\mathrm{x}_{\mathrm{j}_{0}}=1\) first.
Method 2: Lower Lcund: Dual LP relaxation.
    Opper kound: Addition heuristic.
    Separation: \(j_{0}=\operatorname{argmax} c_{j} / h_{j}\) among all
        j not in currert solution.
    Branching: \(\mathrm{x}_{\mathrm{j}}=0\) first.
Method 3: Lower bcund: Dual LP relaxation.
    Upper icund: Deletion heuristic.
    Separation: argmin \(c_{j} / h_{j}\) among all variables
    \(j\) not in current solution.
Branchiry: \(\mathrm{x}_{\mathrm{j}}=1\) first.
```

Method 4: Lower Lound: Dual Lp relaxation.
Upper cound: Deletion heuristic.
Separation: argmax c_{j} / h_{j} among all variabies j not in current solution.
Sranchiny: $\mathrm{x}_{j}=0$ Eirst.
Method 5: Lower Lound: Kovac's
Upper bound: Addition heuristic.
Separation: argmin c_{j} / h_{j} among all variables
j not in current solution.
Branching: $\mathrm{x}_{\mathrm{j}}=1$ first.
As illustrated in Table 5, three problems were not solved optimally. We denotethe actual percentage with respect to the optimal value as a "mopm" and the provably optimal fercentage as "\%POPT." \%POPT denotes the a匹ount by which were able to prcve that the best solution found varied from the oftimal solution without knowirg the optimal solution. This value is obtained by changing the CLBND \geq EEST tests in the branch and bound alyorithm to
CLBND \geq BEST-EPS where EPS is. an allowable amount of error. If the kranch and bound algorithm then halts, it fcllows that the incumbent solution is within 100% (BEST+EPS)/REST of the oftimal soluticn.

All these problems except Truck are typical set covering problems which have right-hand-side values equal to 1. The Iruck. froklem has the general riyht-hand-side form shown ir Equation (2). The computational results are summarized in Table 5. These results are the best of the various solution methods tried. "Previous Results" indicate either those times reported bi Bausch or the times we recorded using the methods of Bausch. Funning times on Steiner2 are for 10000 nodes only; optimality was not proven in either our or Bausch's computation. Table 6 shows the comparison betweer the different soluticn techniques on each of the problems. The problems marked with * were not solved optimally within 1 minute of CPU time.

$$
\begin{aligned}
& \begin{array}{l}
\text { Tiger* } \\
\text { Truck* }
\end{array} \\
& \text { Steinr2a } \\
& \text { Steiner2 } \\
& \text { Steinc1a } \\
& \text { しJəu!ə7S }
\end{aligned}
$$

$$
\begin{aligned}
& \bar{m} \bar{\jmath} \bar{q} \bar{\jmath} \bar{\beth}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllll}
\omega & H & \vec{\omega} & 0 & 0 & \vec{\infty} \\
\text { i } & \omega & 0 & 0 & 0 & 0 \\
i & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{c}
969^{\circ} \text { 力 } \\
68^{\circ} \text { レ }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
9 \cdot 68 \varepsilon \\
78 \cdot \varepsilon 与
\end{array} \\
& \begin{array}{l}
0^{\circ} G L \\
0^{\circ} O \varepsilon \\
0^{\circ} 6 \\
0^{\circ} 8 L
\end{array} \\
& 969^{\circ} \mathrm{H} \\
& \begin{array}{l}
68^{\bullet} \mathrm{L} \\
\overline{\text { an }} \bar{\top} \overline{\mathrm{p}} \bar{\Lambda}
\end{array} \\
& \bar{\partial} \bar{n} \bar{\tau} \overline{\mathrm{e}} \bar{\Lambda} \\
& \bar{l} \overline{\mathrm{p}} \bar{o} \bar{\psi} \bar{\mp} \bar{\partial} \bar{W} \\
& \text { spoy } 0 \mathrm{~W} \text { uotqntos snotien fo uostieduos } \\
& \begin{array}{l}
\text { てカ・9S } \\
8 て \cdot し カ ~ \\
\text { L•9てし }
\end{array} \\
& \begin{array}{l}
L L^{\circ} \mathrm{SOL} \\
\varepsilon 8^{\circ} \varepsilon \varepsilon
\end{array} \\
& S \cdot L \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\mathrm{p}} \overline{\overline{4}} \overline{7} \bar{\partial} \bar{W} \\
& \text { uos!a } \\
& 9 \text { ヨTGVL }
\end{aligned}
$$

B. EXAMPLE

One cf the results of the tests was that the deletion heuristic usually produces better feasible solutions thar the addition heuristic both initially and further down the tree. This leads to the enumeration of fewer nodes with the deletion heuristic. Unfortunately, it does not leał to faster times because the deletion heuristic is so much slower than the addition heuristic. For example, using method 4 which includes the deletionheuristic, it is possible to solve Bus after exploring only 15 nodes. Using method 1 with the addition heuristic requires develorirg 53 nodes to solve Bus. Cn the other hand, the method using the deletion heuristic requires 4.24 seconds to solve the problem while the method using the addition heuristic requires only 0.82 seconds to solve the problem.

In order to illustrate the actual behavior of the algorithm, the enumeration for Bus is shown below for two different methods, method 2 and $\mathbb{m} e t h o d 4$. For these two methods, the enumeration trees are sufficiently small to be shown. The entire trees generated for Bus are displayedir. Figure 5.1 and Figure 5.2. Note that for both methcds, the optimal solution is found at the second node of the enumeration tree. Most of the running time of the alyorithm is sfent froving optimality after the optimal solution is fourd.
-sng uo 2 poy7aw $l^{\circ} \mathrm{S}$ ainbta

Figure 5.2 Method 4 on Bus.

VI. CONCIDSIONS AND RECOMMENDATIOAS

The rrarch and bound enumeration method using heuristically obtained upper and lower bounds works weil cn some problems and poorly cn others. Solution times are better than the times using the metrods described $k y$ bausch on certain frobiems but other problems could not be solvel to optimality in a reasonable amount of time. The algorithm is largely dependent upon the quality of bounds obtained, and in certain instances these bounds are not very yood.

The greedy addition heuristic used here does not perform as well as might be hoped and the deletion heuristic, which performs better, is too slow to use in most cases. Other addition heuristics should probably be tested which select that columr j minimizing some function $g\left(c_{j}, h_{j}\right)$, where $g\left(c_{j}, h_{j}\right)$ is some function other thar $c_{j} /{ }_{j}$ such as $c_{j} / \log \left(h_{j}\right)$. In fact, Vasko and Williams [Ref. 51] have had some success selecting randomly from a rumber of such functions, albeit on randomiy generated problems. They also utilize a 1-oft heuristic. Future research should examine the use of this ard other exchange heuristics, particularly in conjunction with the addition keuristic since it may be possible to significantly improve upon the solutions obtained without sacrificing much couputational speed.

The lower bound from the dual LP works quite well on some froblems and pocrly on others, notably Truck. of course, the Lp-based bound did not work well on Steiner1 or Steiner2 since those problems were concocted so as to have very foor Le relaxaticns. The high speed of computation for
this lower kound does allow rapid investigation of a large number of nodes, however. In the Steiner problems, we expected that branch and bound enumeration using kovac's Iower bourd might work better than the other lower bounds since the value of the initial lower bounds were stronger thar the other bounds as shown in Table 4. Unfortunately, the guality of the bound does not improve rapidly enough as the enumeration froceeds. Additional research is needed to generate better heuristic solution sets and lower bounjs.

APPENDIX A

DATA FORMAI FOR TRUCR ROUTING EXAMPLE

 7979 。

3．Salkin，H．M．and Koncal，R．D．，＂Set Covering．by an all Integer Algorithm－Computational．Experience，＂

4．Balas，E．and Fadberg，M．N．，＂Set Partitioning：A

5．Marsten K ．E．，and Muller M．R．＂A Mixed Integer Progamming Approach to Air Carjo Fleet planning．＂
Management
Science， 9980 。

6．Spitzer，M．，＂Solution to the crew Scheduling problem，＂presented at the first aGIFCRS Symposium， October 1961.

7．Kolner．T．N．＂Some Highlights of a Scheduling Matrix Generation System，＂United Airlines，presented at the Sixth AGIFORS Symposium，September 196 ．

8．Aratevre，J．P．Fearnley，J．，Steiger，F．C．，and Teather，F．＂The Airline Crew Scheduling Problem：A A Surveg゙

 for a Delivery Froblem," operations Fesearch, vol. 12, no. 8, pp. 300-304, 1964.
14. Clark, G. and Fright, S. W. "Scheduling of Vehicles from a Central Lepot to a Number of Delivery points,"

15. Pierce, J. F. to a "Application of Combinatorial programming to a Class of All-zero-one Integer no. 3, pp. 191-209, 1968.
 June 1968 .
17. Wagner, W. H., "An Application of Integer Programming to Legislative Fedistricting," CROND, Inc. at the 34 th National Meeting of CRSA, Ehiladelphia, Pennsylvania, November 1968.
18. Garfinkel, R. S. an孔 Nemhauser, G. I., "optimal
 pp. 495-508, 1570.
19. Day, R. \quad. , "Cn Optimal Extracting From A Multifle File Data Storage System: An Application of Integer pp. 482-494; 1565.
20. IBM Research Center Report RC-756, An Application of

21. Balinski, M. L., "Integer Programming: Methods, Uses, computation," 1 Management_S
22. I3M Research Center Report RC-756, A Statistical Study

Paul, M. C. and Unger, S. H., Minimizing the Number

24. Root, J. C. \quad St An Application of Symbolic Logic tc a no. 4, pp. 519-526, 1964.
25. Pierce, J. F., "Pattern Sequencing and Matching in Stock Cutting Cperations," Iappi, vol. 53, no. 4, pp. 668-673, April 1970 .
26. Salveson, M. E., "The Assembly Iine Balancing Prcolem," journál of Ingustrial Engineering, vol. 6 ,

Dwyer, F_{A} R. and Evans, J. R., "A Branch and Eound Algorithm for the List Selection Problem in Direct Mail Advertising" Maragement Science, vol. 27, no. 6, pp. 658-667. 1981.

30. Thuve, H., "Frequency planning as a Set Partitioning Problemz"

32. Cullen, F. H., Jarvis, J. J. and Ratliff, H. D., "Set Partitioning Eased Heuristics for Interactive Routing," Netw돈, vol. 11, no. 2, pp. 125-143, 1981.
33. Shanker, R. J., Turner, R. E. and Zoltners, A. A. ,
 Novemiver 1975.
34. Busacher, R. G. and Saaty: T. L., Einite Graphs and

Bartholdi. IIT, J. J., Crlin, J. B. and Fatliff, H. D.,

36.

Bartholdi, III, J. J., "A. Guaranteed-Accuracy

37. Bellmore, M. Greenberg, fi. J. and Jarvis, J. J.,

Anela, Y. P. and Vemuganti, R. R. "A Row Generation Scheme for Finding a Multi-commodity Mirimum Discornecting Set." Maraqement_science, vol. 23,

40. Revelle, C., Marks, D. and Liebman, J. C., "An Analysis of Frivate and public sector Lccation
41. Garfinkel, R. S., "Branch and Bound Methods for Tnteger programminge" Combinatorial optimization, john
42. Brown, G. and Graves, G. . "Design and Implementation of a Large Scale (Mixed Integer, Ncnlinear) Optimization System," presented at Las vegas 0xSA/TIMS Conference, November 1375.
43. Garfinkel, R.

45. Hey, A. M. A $\frac{A}{1}$ gorithm for the Set Covering problem,

46. Naval Postgraduate School Report NPS55-84-020,

 SR $\frac{\text { Phe }}{\text { Stence. Dimperial college, Iondon, } 1975 .}$
48. Balas, E., "Cutting Planes from Conditional Bounds: A Nek Approach to Set Covering,"Mathematical programming, vcl. 12, pp. 19-36, 1980 .
49. Fulkerson, D. K., Nemhauser, G. I. and Trotter, I. E., "Tho Computationally Difficult Set covering problems That Arise in computing the symidth of incidence Procramming Study, vol. 2, pp. 72-81, 1974 .
 Angeles, 1971.
51. Vasko, F. J. and Wilson, G. R., "Using a Facility

No. Copies

1. Defense Technical Information Center
Cameron Station
Alexandria, $\nabla A 22314$
2. Iibrary, Code 0142
Naval Postgraduate School
Monterey, CA 93943
3. Department Chairaan Code 55
Department of Orerations Research
Naval Postgraduate School
Monterey, CA 93943
4. Professor Kevin rood
Department of oferat
信
Naval Postgraduate School
Monterey, CA 93943
5. Professor Gerald G. Brown
Code 55bw
Department of Oferations Research
Naval postgraduate School
Monterey, CA 93943
6. Frofessor Garret N. Vanderplaats
Departmert of Mechanical Enyineering
University of California, Santa Barbara
Santa BarEara, CA 93106
7. Major Kook Jin Nam 19 Pyeong-Lee 1 Dong, Seo-Gu, Taegu 630, Seoul Korea.
8. Iibrary
F.O. ECX 77

9. Major $\frac{T}{T}$ ae 7 Nam Ahn
Computer Center
GongNeung Dong, Dobong-Gu
Seoul 130-09. Korea
10. Major Hee Sun Scng

