WHIRLITIT PROERMNWIN OF S , aPPROXIMATIDN FOL FIUX DSTRESETION IN A FWITE CHIMSRISIL a:METR willinm Edvaril Camphail, Jr. ant Vineml William Panciera

Secretary of the Faculty
Massachusetts Institute of Technology
Cambridge 39, Massachusetts

Dear Sirs

We hereby submit our thesis, Whirlwind Progranming of S_{2} Approximation for Flux Distribution in a Finite Cylindrical Reactor, in partial fulfillment for the degree of Naval Engineer and the degree of Master of Science in Naval Architecture and Marine Engineering。

> Whirlwind Frogramming of S_{2} Approximation for Flux Distribution in a Finite Cylindrical Reactor by
> William Edward-Campbell, Jr., Lieutenaht, U. S. Navy B.S., U. S. Naval Academy, 195l
> and
> Vincent William Panciera, Lieutenant, U. S. Navy B.S., U. S. Naval Academy, 1951
submitted in partial fulfillment of the requirements for the degree of Naval Engineer
and the degree of
Master of Science in Naval Architecture and Marine Engineering
at the
Massachusetts Institute of Technology June 1957

Thesur
219\%

Whirlwind Programming of S_{2} Approximation for Flux Distribution in a Finite Cylindrical Reactor

 byWilliam E. Campbell Jr. Lieutenant, U.S. Navy
Vincent W.-Panciera
Lieutenant, U.S. Navy

Submitted to the Department of Naval Architecture and Marine Engineering on May 27, 1957 in partial fulfillment of the requirements for the degree of Naval Engineer and the degree of Master of Science in Naval Architecture and Marine Engineering.

Abstract

This thesis attempts to develop a program for the Whirlwind Computer operating in the interpretive mode for the flux distribution in a finite cylindrical reactor.

The reactor chosen for investigation was a hypothetical organic moderated, highly emiched, cylindrical reactor having a power output capable of fulfilling one half the propulsive requirements of 2 nuclear powered naval cruiser.

Heat transfer and basic physics calculations were accomplished to determine preliminary size and material requirement of such 2 reactors

The flux equations were derived using numerical integration methods suitable for computer programming.

Conclusion

1) The code as presently programmed is incorrect.
2) The grid spacing $2 s$ used is much too coarse. This difficulty is not inherent in the coded program.
3) The mode of computer operation is unsuitable for an iterative process such as this because it results in 2 code that progresses too slowlyo

Recommendations

1) Prios to the use of any computer 2 formal or semi-formal course in programming should be completed.
2) A grid spacing comparable to the mean free path of the neutron should be selected.
3) The fastest possible mode of calculation on the computer available should be usedo
4) For coded program of this difficulty a faster machine with a meh larger fast memory is very desirable.

Thesie Supervisos
Titie

Melville Clark, Jx.
Assistant Professor of Nuclear Engineering

ACKNOWLEDGEMENTS

The authors wish to express their gratitude to Professor Melville Clark, Jr., for his supervision and helpful suggestions in completing this thesis and to Mr. Marius Troost for his untiring assistance in developing the program for Whirlwind.

Table of Contents

Page
Title Page
Abstract i
Acknowledgements iii
Table of Contents iv
I Introduction 1
II Procedure 6
A. Heat Transfer 6
B. Basic Reactor Physics 24
C. Flux Equations 27
D. Computer 37
I. Introduction 37
2. Logic 4
III Resulte 58
IV Discussion of Results 59
\checkmark Conclusions 61
VI Recommendations 62
VII Appendices
A. Development of Equations Using S Approximation to the Boltzmann Equation for Cylindrical Geometry 63
B. Whirlwind Program 87
C. Bibliogrephy 99

INTRODUETION

The desirability of a unifosin power distribution ($\mathrm{P}_{\max } / \mathrm{P}_{\mathrm{av}}$) $=1$ has long been realized since it will not only decrease the mass of the fuel required for the attaiment of criticality but also will increase the total power output by allowing the whole core instead of only a small fraction of the reactor to operate at the highest allowable temperature. Operation at the highest possible temperature allowed by metallurgical considerations over the entire reactor will increase the average core life since more uniform burn up is attained.

It is possible to achieve this uniform power distribution by various means. One of the first methods to be used was that of poisons. In this method long lasting poisons are placed in the reactors structure in the anticipated locations of high flux. By placing poison in these regions the peak flux is reduced to such a Ievel that the power density is approximately uniform. This prom cedurezis a very wasteful one from the point of view of neutron economy. The regions of the reactor that are contributing greatly to the overall neutron efficiency of the reactor are penalized to the extent that they can be no more efficient than the most inefficient region. For power producing reactors, particularly mobile ones, this waste of neutrons is very undesirable.

The use of poison is the first of two methods that expleint a nonuniform macroscopic cross section to achieve the uniform distribution of power. The second consists in the use of a nonuniform macroscopic fissian cross section. This method allows each region of
the reactor to operate most efficiently. The efficiency is determined by the position of the region within the reactor. The leakage from a reactor causes a reduction in the value of the flux at large distances from the center of the core. To compensate for this reducm tion in flux the macroscopic fission cross section is increased in the fegions far from the center and decreased in the central portions. To this end, the fuel concentration is increased near the edges. Neutron economy can also be improved by surrounding the core with neutron reflector material. A light substance having a relatively low absorption cross section performs this function very well, i。e., heavy water or beryllium.

Since the reactor to be investigated is intended for a hypothetical naval cruiser, the use of poisons to achieve a uniform power distribution is not desirable, for a compatreactor is required. Though the reactor must be compact, it is desirable to install a reasonably thick reflectox for the purpose of improving the neutron economy, attemating Themeutrons leaking out, and cooling of the reactor shell and pressure vessel.

It would be possible to have a nonuniform macroscopic cross section of the reactor in each of its directions. For the spherical reactor the variation would be radial only y_{9} but the application of a spherical reactor to shipboard use is impractical. The normal cone figuration of spaces aboard a ship is rectangular and a spherical reactor does not adapt very well to this arrangement. However, a rectangular reactur allows efficient utilization of space aboard a ship, but from the melear point of view this shape is not too desire

able because leakage depends on the relationship of surface area to volume. It can be seen that the neutron economy decreases in progression from the sphere to the cylinder to the rectangular parallepiped.

Wîth these considerations in mind a right cylindrical reactor shape will be investigated. With this shape it would be possible to vary the properties in two directions, radially and axiallyo While this goal is theoretically interesting, it is prohibited when cost is considered. The reactor that is toke investigated will have a uniform composition in the axial direction with finite radial segments differing in properties.

For the shipboard use of a nuclear reactor power plant it is desirable to have a plant as light and safe as can possibly be designed within the space allowed but still without incorporating undue quantities of the "exotic" and expensive materials or coolants. One possible solution is the use of a highly enriched reactor using a coolant that permits high operating temperatures at low pressures and does not become dangerously radioactive while passing thru the reactor core.

A coolant that has a low vapor pressure at high operating temperature will allow a system pressure which is much lower than that employed in the present day water cooled and moderated shipboard reactor installation. The use of such a coolant will not only result in much better steam conditions, but it will also make possible an overall weight reduction, since a low pressure system can be used. The saving in weight is particularly significant in the pressure
ressel.
If the coolant does not become radioactive ini,its passage thru the reactor core, the shielding can be concentrated primarily around the reactor properg provided that impurities in the coolant are kept at a very low concentration. Even with a small amount of impurities, the radiation emitted by the coolant would be low enough to permit reduced thicknesses of shielding around the primary 100p.

A liquid organic hydrocarbon will fulfill the requirements listed above, but also will present some unsolved problems. It will (1) tend to increase the size of the reactor by decreasing the hydrogen moderata tion relative to a water cooled and moderated reactor, (2) tend to incease the reactor size due to its less efficient heat transfer capabilities compared with water and (3) exhibit both thermal and padiolytic breakdowi in which the original hydrocarbon will, primarily by polymerization, change into longer chain hydrocarbons with the evolution of relatively large amounts of gas and a great increase in Viscosity of the coolant

The Iatter problems will be investigated at the National Reactor Testing Station on the Organic-Moderated Reactor Experiment (ORME). This experiment is not a prototype for an organic power reactor but is being built to test the feasibility of its use as a reactor coolant. At the West Milton Annex of the Knolls Atomic Power Laboratory the Atomic Energy Commission plans to investigate the feasibility of an organic moderated and cooled reactor for naval propulsion. This will be conducted on the Naval Organic Reactor Experiment. (NORE),

The heat transfer properties of the various liquid organic hydrocarbons that are presently under consideration are not generally available, Some presently under investigation are diphenyl, O-terphenyl, M-terphenyl and P-terphenyl. A proprietary heat transfer medium "Dowtherm" is available conmercially and is composed of 73.5% diphenyl oxide and 26.5% diphenyl. It has a working range of 450 $750^{\circ} \mathrm{F}$. at pressures less than 145 psig. Since "Dowtherm" closely resembles the hydrocarbons that will be investigated on the ORME and its heat transfer properties are readily available ${ }^{[2]}$ it will be used in this investigation.

The fuel element chosen for this investigation is of the MTR (Materials Testing Reactor) type. ${ }^{[3]}$ An effective length of element was set at 48^{119}. This length chosen so that the overall height of the reactor, control devices and shield would fit into the present day engineering spaces of a cruiser. Any additional height would have an adverse effect on stability, since it would result in a higher shield deck and thus an increase in the height of the center of gravity of the ship.

Fuel Element Dimensions

$$
\begin{aligned}
& t_{m}=0.020^{\prime \prime} \\
& t_{c}=0.015^{\prime \prime} \\
& W=2.5^{\prime \prime} \\
& W^{\prime}=48.0^{\prime \prime} \\
& \\
& t_{s}^{1}=0.115^{\prime \prime} \\
& t_{s}^{2}=0.0919^{\prime \prime}=0.8 t_{s}^{1} \quad \text { (Case 2) } \\
& t_{s}^{3}=0.069^{\prime \prime}=0.6 t_{s}^{1} \quad \text { (Case 3) }
\end{aligned}
$$

PROCEDURE

Heat Transfer ${ }^{\circ}$

The controlling variables in this study were (1) the maximum surface temperature of the fuel element or the maximum temperature at the centerline of the fuel element and (2) the maximum coolant speed. The maximum surface temperature of the fuel element may be controlling, since the preliminary investigations on the ORME have shown that above $800^{\circ} \mathrm{F}$ the thermal breakdown is increased greatly. However, liquid loading requirements of a naval vessel make storage of used coolant a simple matter and in the interest of higher efficiency some breakdown will be accepted. Therefore, a fuel element surface temperature less than $85^{\circ} \mathrm{F}$ will be accepted. If the maximum fuel temperature at the centerline is allowed to exceed a value of about $1130^{\circ} \mathrm{F}$, a phase transformation of uranium is encountered in which an anisotropic expansion and possible rupture of the fuel element may result. Therefore, a second design criterion will be required that the fuel element centerline temperature be less than $1130^{\circ} \mathrm{F}$.

Preliminary studjes on the ORME have also shown that coolant speeds greater than 15 feet per second result in excessive erosion. As a third design criterion, it will be required that coollant speed be less than 15 feet per second.

The first investigation was with a reactor coolant outlet temperm ature of $750^{\circ} \mathrm{F}$ with various temperature rises across the reactor. This investigation was amplified by varying coolant speed while holding the temperature rise across the reactor constant. Each of these situations were further studied by considering the MTR fuel element modified to the extent that the plate spacing was narrowed to 80% and 60%.

[^0]Though it was known in advance that the speed would be kept at or less than 15 feet per second calculations were pursued with higher values. This was done to show that a reduction in size can be accomplished in the future, if the erosion problem at high coolant speeds can be overcome.

A heat rate requirement of $6.06 \times 10^{8} \mathrm{Btu} / \mathrm{hr}$ was chosen based on the full power steaming rate of a typical cruiser.

With this value of $Q\left(6.06 \times 10^{8}\right)$ a coolant outlet temperatures coolant temperature rise, coolant speed and plate spacing are chosen. Since the inlet and outlet temperatures are known the average values of density and specific heat may be calculated. Formulae $1,2,3$, and 4 are used respectively to calculate $w_{2} A_{f^{g}} G$ and n_{0}

$$
\begin{gather*}
W=\frac{Q}{\mathrm{C}_{\mathrm{p}} \Delta T}=G A_{f} \tag{I}\\
A_{f}=\frac{W}{3600 \hat{\rho} V} \tag{2}\\
G=\nabla_{P}=\frac{W}{3600 A_{f}} \tag{3}
\end{gather*}
$$

$$
\begin{equation*}
n=\frac{A_{f}}{A_{f}^{n}} \tag{4}
\end{equation*}
$$

Since the dimensions of the fuel element for each case are known, both the hydraulic diameter and the total flow area can blealculated. With the product of the mass flow rate and the hydraulic diameter the produce of the heat transfer coefficient and the hydraulic diametero can be read from the graph in the "Dowtherm" booklet. Formulae 5, 6, 7,
and. 8 are then used to calculate, respectively, $Q_{\nabla}, \Delta T$ fuel ${ }^{\Delta T}$ clad 9 and θ 。

$$
\begin{align*}
Q_{\nabla} & =\frac{Q}{\nabla_{f}} \tag{5}\\
\Delta T_{f u e l} & =T_{0}-T_{I}=\frac{t_{m}^{2} Q_{V}}{4 k_{f}} \tag{6}\\
\Delta T_{\text {clad }} & =T_{Q}-T_{2}=\frac{t_{m} Q_{c} t_{c}}{2 k_{c}} \tag{7}\\
\theta & =T_{2}-T_{b}=\frac{Q t_{m}}{2 h} \tag{8}
\end{align*}
$$

Datum from the calculation of a coolant outlet temperature of $750^{\circ} \mathrm{F}$ for various values of temperature rise and speed for cases Io 2 and 3 are in Tables $I_{9} I I^{2}$ and III and Figures I_{9} II, and III respectively。 The cladding temperature existing for each of these conditions is plätted on Figure IV.

The narrowest plate spacing, case 3 , gives a significantly smallero reactore Since the pumping power of any of these cases proved to be Fery small compared with the total power output, it was decided to investigate the result of a decrease of coolant outlet temperature fors this case only. Coolant outlet temperature was reduced to $700^{\circ} \mathrm{V}$ and the speed was held at 25 feet per second. Datum from this calculation are in Table IV. These data were plotted as a dotted line on Figure IV.

For these twelve conditions the fraction of uranium in the uraniume zirconium dispersed fuel plate was calculated and plotted on Figure V_{0} It is desirable that the fuel be of such a composition that it contributes

TABLE I

Datum for coolant outlet of $750^{\circ} \mathrm{F}$ and wide plate spacing (case 1)
A. REACTOR $\triangle T=200^{\circ} \mathrm{F}$
$\begin{array}{ccccc}\nabla & G & h & A_{f} & n \\ (f t / s e c) & \left(l b / s e c-f t^{2}\right) & \left(B t u / h r-f t^{2}-0 F\right) & \left(f t^{2}\right) & \text { (no. of plates) }\end{array}$

5	236.1	686.	5.36	2.685
15	709.0	1611.	1.79	896
25	1180.0	2340	1.07	538
50	2360.0	4090	0.54	269

$\begin{array}{ccccccc}\nabla & Q_{V} \times 10^{8} & T_{0}-T_{I} & T_{I}-T_{2} & T_{2}-T_{b} & T_{2} & f_{u} \\ (f t / s e c) & \left(\mathrm{Btu} / \mathrm{hroft} \mathrm{t}^{3}\right) & \left({ }^{\circ} \mathrm{F}\right) & \left({ }^{\circ} \mathrm{F}\right) & \left({ }^{\circ} \mathrm{F}\right) & \left({ }^{\circ} \mathrm{F}\right) & \%^{\circ}\end{array}$
$\begin{array}{lllllll}15 & 4.86 & 20.7 & 62.2 & 215.8 & 1015.8^{*} & 25.4\end{array}$
B. REACTOR $\triangle T=150^{\circ} \mathrm{F}$

5	231.9	682.	7.26	3.639
15	705.0	1591.	2.42	1,211
25	1160.0	2320.	1.45	727
50	2318.0	4040	0.73	364

$\begin{array}{cccclll}\nabla & Q_{V} \times 10^{8} & T_{0} \propto T_{1} & T_{1}-T_{2} & T_{2}-T_{\mathrm{b}} & \mathrm{T}_{2} & \mathrm{f}_{\mathrm{u}} \\ (\mathrm{ft} / \mathrm{sec}) & \left(\mathrm{Btu} / \mathrm{HrPoft}^{3}\right) & \left({ }^{\circ} \mathrm{F}\right) & \left({ }^{\circ} \mathrm{F}\right) & \left({ }^{\circ} \mathrm{F}\right) & \left({ }^{\circ} \mathrm{F}\right) & \% \\ 15 & 3.60 & 15.4 & 46.0 & 197.3 & 947.3 & 19.5\end{array}$
*excessive temperature
$Y_{\text {UPanium }}$ content too low

Table I (Continued)
C. REACTOR $\triangle T=100^{\circ} \mathrm{F}$

V $(f t / s e c)$	G $\left(1 b / s e c-f t^{2}\right)$	h $\left(B t u / h r-f t^{2}-{ }^{\circ} F\right)$	A_{f} $\left(\mathrm{ft}^{2}\right)$	n (no. of plates)
5	227.	669.	11.01	5,520
15	681	1569.	3.67	1,839
25	1135.	2295.	2.02	1,103
50	2270	4000	1.10	552

$\begin{array}{lllllll}15 & 2.37 & 10.1 & 30.3 & 133.8 & 883.8^{*} & 13.5\end{array}$
D. REACTOR $\triangle T=50^{\circ} \mathrm{F}$

$$
\begin{aligned}
& \begin{array}{ccccc}
V & G & h & A_{f} & n \\
(f t / s \in c) & \left(I b / s e c o f t^{2}\right) & \left(B t u / h r-f t^{2}-\odot F\right) & \left(f t^{2}\right) & \text { (no. of plates) }
\end{array} \\
& 5 \quad 221.8 \\
& 15 \quad 667.0 \\
& \text { 659. 22.40 } \\
& \text { 11,230 } \\
& 25 \text { 1110.0 } \\
& 50 \quad 2218.0 \\
& 1545 . \\
& 3.730 \\
& \text { 2275. } 4.47 \\
& \text { 2,240 } \\
& \text { 3910. } 2.24 \\
& \text { 1, } 123
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllllll}
15 & 1.17 & 4.97 & 15.0 & 66.2 & 816.2 & 6.99
\end{array}
\end{aligned}
$$

[^1]
TABLE II

Datum for coolant outlet of $750^{\circ} \mathrm{F}$, coolant speed of $15 \mathrm{ft} / \mathrm{sec}$, and medium plate spacing (case 2)

$\begin{aligned} & \Delta T \\ & \left({ }^{\circ} \mathrm{F}\right) \end{aligned}$	$\frac{G}{\left(l b / \sec -f t^{2}\right)}$	(Btu/hr	${ }^{\circ} \mathrm{F}$)	${ }^{n}$	$\begin{gathered} Q \times 10^{8} \\ \left(B t u / h r-f t^{3}\right) \end{gathered}$
200.	709.			1121.	3.89
150.	705.			1515.	2.88
100.	681.			2300.	1.89
50.	667.			4660.	0.94
$\begin{gathered} \Delta T \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{aligned} & T_{\theta} \infty T_{I} \\ & (\sigma \mathrm{~F}) \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{q}}-\mathrm{T}_{2} \\ & \left({ }^{\circ} \mathrm{F}\right)^{2} \end{aligned}$	$\begin{aligned} & T_{2}-T_{b} \\ & \left({ }_{F} \mathrm{~F}\right) \end{aligned}$	$\begin{gathered} \mathrm{T}_{2} \\ \left(\cdot{ }_{\mathrm{F}}\right) \end{gathered}$	$\begin{aligned} & f_{u} \\ & \%_{0} \end{aligned}$
200	16.6	49.7	193.9	943.9*	19.6
150	12.3	36.9	14402	894.0	16.1
100	8.1	24.3	96.3	846.3	11.0
50	4.0	12.0	47.6	797.6	$5.6{ }^{\gamma}$

TABLE III

Datum for coolant outlet of $75^{\circ} \mathrm{F}$, coolant speed of $15 \mathrm{ft} / \mathrm{sec}_{9}$ and narrow plate spacing (case 3)

保

TABLE IV

Datum for coolant outlet of $700^{\circ} \mathrm{F}$, coolant speed of $15 \mathrm{ft} / \mathrm{sec}$, and narrow plate spacing (case 3)

正

to the structural strength of the reactor. A uranium content of 10% by weight or greater has desirable strength characteristics.

Of the six conditions that have a fuel element surface temperature of less than $850^{\circ} \mathrm{F}$ only two have a uranium fraction of above 10%. These are shown in Table V.

$t_{\text {co }}$	T	case	n	T_{2}
750	100	3	3061	818
700	100	3	1767	815

Table V Particularly Interesting Cases

Figure VI shows the variation in number of plates for case 3 holding the coolant speed at 15 feet per second and varying the temperature rise across the reactor.

The size resulting from the condition with a coolant outlet temperature of $700^{\circ} \mathrm{F}$ is better for the following reasonss
I) it is by far the smaller,
2) the increase of uranium fraction by $21 / 2 \%$ gives a significant increase in the strength of the fuel region.

With this condition the fuel element surface temperature will be less than the prescribed value of $850^{\circ} \mathrm{F}$. The amount of damage that will result to the coolant from this temperature and the accompanying radiation is uncertain. However, for shipboard applications it does not appear to be a serious penalty.

In the present day cruiser design for torpedo protection there is available a large amount of bunker fuel oil to partially fill the

layers of the torpedo protective system. Certain layers of the torpedo protective system are required to be liquid loaded. This system could be used for the storage of the organic moderator coolant. The unradiated coolant could be stored in the imer layers of the system and that which had been irradiated would be stored in the outer layers to protect the crew from any induced radioactivity. The long chain hydrocarbons would tend to settle to the lower parts of the tanks where they could be removed during periods of overhaul. With the installation of a purification system this process of separation might be handled contimuously aboard ship in the same manner that lubrication oil is purified and recycled.

Nomenclature

A_{f}	flow total area, (ft ${ }^{2}$)
A_{f}^{n}	flow area per plate case n, (fttplate)
A_{h}	heat transfer area, (ft\%plate)
$\overline{\mathrm{c}}_{\mathrm{p}}$	average specific heat, ($\mathrm{Btu} / \mathrm{lb}{ }^{\circ} \mathrm{F}$)
D^{\prime}	hydraulic diameter, (inches)
f_{u}	fraction of uranium in fuel region
G	mass flux, (lb/sec-ft ${ }^{2}$)
h	film coefficient, ($B t u / h r-f t^{2}-{ }^{\circ} \mathrm{F}$)
k_{c}	thermal conductivity of cladding, ($\mathrm{Btu} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}$)
k_{f}	thermal conductivity of cladding, (Btu/hr-ft- ${ }^{\circ} \mathrm{F}$)
L	fuel length, (inches)
n	number of fuel plates
Q	total heat generation rate, (Btu/ft ${ }^{3}$)
Q ${ }_{\text {V }}$	heat generation rate per unit volume of fuel, (Btu/hr-ft ${ }^{3}$)
${ }_{\text {c }}$	fuel cladding thickness, (inches)
$t_{c o}$	coolant outlet temperature, (${ }^{\circ} \mathrm{F}$)
t_{m}	fuel thickness, (inches)
t_{s}	spacing between plates, (inches)
T_{b}	bulk temperature of coolant, (${ }^{\circ} \mathrm{F}$)

```
Nomenclature (Continued)
    To fuel centerline temperature, ( }\mp@subsup{}{}{\circ}\textrm{F}
    T1 fuel-clad interface temperature,(
    T2 fuel element surface temperature, (}\mp@subsup{}{}{\circ}\textrm{F}
    U overall heat transfer coefficient, (Btu/hr-ft }\mp@subsup{}{}{2}-\mp@subsup{}{}{\circ}\textrm{F}\mathrm{ )
    v coolant speed,(ft/sec)
    w mass rate of flow, (lb/hr)
    W fuel width, (inches)
    \DeltaT overall temperature difference across reactor, (}\mp@subsup{}{}{\circ}\textrm{F}
    \overline{\rho}}\quad\mathrm{ average density, (lb/ftt)
    0 film temperature drop,( }\mp@subsup{}{}{\circ}\textrm{F}
```

Criticality calculations were made using a one group reflected homogenous model with case 3, narrow fuel lemonts. Based on heat transfer considerations, inlet and outlet coolant temperature were set at 600° and $700^{\circ} \mathrm{F}$, respectively, with a coolant speed of $15 \mathrm{ft} / \mathrm{sec}$.

The assumptions in this calculation were

1. The structural members inside the reactor were of type 347 gtainless steel and composed ten percent of the total reactor weight,
2. A fast fission factor of unity,
3. The uranium of fuel is onriched to 90% in 0^{235},
4. A right circulas cylindrical flux distribution of a cosine axially and a Bessel function radially,
5. A beryllium reflector of 236 cm placed around the reactor.

The reactor was treated as a homogeneous medium. By a one group calculation the volumes of each constituent of the reactor were calculated from the dimensions given previously in the heat transfer section. These volumes were thien converted to weights and the volume fraction of the total reactor as shown in Table I. From the cross sections given in BNL $3.35^{[5]}$ effective cross sections were calculated for the operating temperature of the material. With these cross sections the reactor parameters as shown in Table II were calculated. These give an effective multiplication factor of 0.894 . This value is sufficiently close to unity that final adjustments are made by the computing machine-

The primary purpose of the calculation is to obtain an approximate
value of the critical radius which is needed as an input to the computer solution.

Table I

Reactor Materials

Volume	Mass	Volume fraction
$\left(\mathrm{cm}^{3}\right)$	(Kgm)	

Fuel
$6.95 \times 10^{4} \quad 495$
\(\left.\begin{array}{lll}\mathrm{U} \& 69.5

\mathrm{Zr} \& \& 425.5

Clad (\mathrm{Zr}) \& \&

\& 15.01 \times 10^{4} \& 966\end{array}\right\}\)| 0.0068 |
| :--- |
| 0.408 |

Stainless Steel $\quad 1.99 \times 10^{4} \quad 160$

Cr (18% by weight)	28.4	0.007
Ni (11% by weight)	17.35	0.004
Fe (71\% by weight)	112.	0.027

Coolant $26.3 \times 10^{4} \quad 219.5$
[73.5 Diphenyl oxide by weight ($\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OC}_{6} \mathrm{H}_{5}$) and 26.5% Diphenyl by weight $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$]

C (06.91 by weight)	0.47043
H (06.03 by weight)	0.03292
$0(86.59$ by weight)	0.3774

Table II
Reactor Parameters

$$
\begin{aligned}
& \delta=\text { Beryllium shield thickness } \\
& \left.\Sigma_{t r}=\sum_{i} \Sigma_{s_{i}}\left(I-\mu_{0}\right)_{i} \nabla_{f} f_{i}-\frac{4}{5} \frac{\Sigma_{a i}}{\Sigma_{t_{i}}}\right) \\
& D=3 \frac{1}{\Sigma_{t_{r}}} \\
& d=0.71 \lambda_{\operatorname{tr}} \frac{1+\beta}{1-\beta}=33.7 \mathrm{D} \\
& \Sigma_{a}=\sum_{i} \sum_{\mathbf{a}_{i}} \nabla_{f} \\
& L^{2}=\frac{D}{\Sigma_{a}} \\
& \begin{array}{ll}
p(E)=\exp \frac{\bar{N}_{28}(3.9)}{\sum_{s} \sum_{s}}\left(\frac{\sum_{s} \times 10^{24}}{\bar{N}_{28}}\right) \cdot 415 \\
\eta f=\sqrt{\sum_{f}} \sum_{\text {a(total })} & =0.726 \\
& =1.9692
\end{array} \\
& k_{\infty}=\eta \mathrm{fp} \epsilon \\
& =\frac{\sum_{i} \Sigma_{s_{i}} \bar{\xi}_{i}}{\Sigma_{s}} \\
& \tau=\frac{D}{\Sigma_{s}} \ln \left(\frac{E_{I}}{E_{2}}\right) \\
& B^{2}=\left(\frac{2.405}{R+d}\right)^{2}+\left(\frac{\pi}{H+2 \delta z}\right) \\
& \beta \equiv \text { albedo of Beryllium } \\
& k_{\text {eff }}=\frac{k_{\text {ie }} e^{-B^{2} \tau}}{1+B^{2} L^{2}} \\
& \text { = } 23.6 \mathrm{~cm} \text {. } \\
& =0.28334 \mathrm{~cm}^{-1} \\
& =\quad 1.17644 \mathrm{~cm} \\
& \text { = } 39.599 \mathrm{~cm} \\
& 0.1208 \mathrm{~cm}^{-1} \\
& 9.7387 \mathrm{~cm}^{2} \\
& 1.4296 \\
& 0.17598 \\
& 0.17598 \\
& =343 \\
& \mathrm{~cm}^{2} \\
& 1.332 \times 10^{-3} \mathrm{~cm}^{2} \\
& 0.894
\end{aligned}
$$

Application of the Flux Equations

The S_{n} approximation is a method of differencing in which the independent variable is quantized into n intervals, and intermediato values of a function of the variable are approximated by a straight line between points at the boundaries of the intertval. This method of numerical integration was developed by Bengt G. Carlson ${ }^{[6]}$.

The vector flux at a point within a reactor can be obtained by the use of the S_{2} method. The equations necessary are derived in Appendix A for two cases of neutron velocity:

Case A - The component of the vector flux in the axial direction is greater than its component in the radial direction.

Case B - The component of the vector flux in the radial direction is greater than that in the axial direction.

These two cases are illustrated in Figure I using a grid which is used to difference the transport equation in the r and z coordinates, r being the radial coordinate and z the axial coordinate.

Figure I

The general flux equation for case A is:
where h is a value which is one greater or less than j, depending upon the direction of the radial component of vector flux, and n is 2 value which is one greater or one less than m, depending upon the direction of the axial component of vector flux. Definitions of the other quantities can be found in the nomenclature part of this section.

For chase B the flux at a point is defined by the following

equation:

where A for Equation (1) and (2) is defined by

It should be pointed out that the total macroscopic cross section, Σ, is evaluated using the material properties at the center of the position grid of Figure I, but are designated by the grid values at the corner diagonally opposite the point jam, i.e. 3 the point h, n_{0} Further, \bar{r}_{h} is actually the mean radius and is equal to $\frac{r_{j}=r_{h}}{2}$.

The source at 2 point is defined by the following equations

where the scalar flux $\varnothing_{j, m}$ is equal to

$$
\sum_{f=0}^{1} H_{f} \sum_{i=0} P_{i} \ell_{\phi_{j, m}^{i, f}}
$$

The fission cross section and transfer probabilities, $\tau_{\text {, are }}$ evaluated using the material properties at the grid point at which the flux is being calculated. The data necessary for the solution of the flux at 2 point is summarized in Tables I. and II;

Table $\mathrm{I}^{\text {: }}$
Data for the S_{2} approximation

Data for Gauss quadrative approximation

1	${ }_{\underline{f}}$	- ${ }^{\text {f }}$	$\mathrm{g}_{\underline{\mathrm{f}}}$	${ }_{\text {H }}^{\text {f }}$
0	-0.8611363	-1.6944625	+1.9677054	$+0.3478548$
1	-0.3399801	-0.3197284	+1.063340	+0.6521452
2	+0.3399801	+0.3197284	+1.063340	+0.6521452
3	+0.8611363	+1.6944625	+1.9677054	$+0.3478548$

Not $2 l l$ pairs of values for i and f are rolevant for each of the cases A and B as a consequence of the defining inequalities for these cases. The pairs of relevant values are discussed in connection with Figure II. A general point may be defined to be any grid point of the reactor other than a point at the center, on the centerline or in the midplane of the reactor. A point at these other places is called an origin point, a centerfline point or a midplane point, respectively. For Case A for which $\left|b_{i}\right|<\left|h_{f}\right|$ and in the case of the first quadrant flux, there is 2 further requirement ($T_{a b l e} I_{\text {, Appendix } A) ~ t h a t ~} b_{i}$ and ${ }_{f}$ have negative signs. In this quadrant there are three Case A filux equations, one for each of the pairs $(i=0, f=0),(i=1, f=0)$, and ($i=1, f=1$). Similarly, for Case B, the requirement $\left|b_{i}\right|>\left|h_{f}\right|$ leade to only one relevant combination.

The applicable combinations and those for the remaining three quadrants are summarized in Table IIL.

Figure II
Flux Configuration
for a particular energy group
at a general grid point

Table III

Allowable combinations of i and f

Quadrant	Case A	Case B
$1^{\text {st. }}$	$i=0, f=0$ $i=1, f=0$ $i=1, f=1$	$i=0, f=I$
$2^{\text {nd }}$	$i=2, f=0$	$i=2, f=1$
$3^{\text {rd }}$	$i=2, f=3$	$i=2, f=2$
$4^{\text {th }}$	$i=0, f=3$ $i=1, f=3$ $i=1, f=2$	$i=0, f=2$

The configuration of the flux at a grid point which results from the allowable combinations of i and f are shown in Figure II. If the flux is assumed to bo distributed in $\ell+1$ energy groups there will be 12 (ℓ in) flux equation associated with every grid point. For the case considered, there are three energy groups and, therefore, thirty-six flux equations for each point.

The following boundary conditions are assumed: [7]

1. Continuity of flux exists at the centerline and at the midplane of the reactor, and further the flux is symmetrical about these boundaries. This permits the calculation of the flux in only one quarter of the reactor. Figure III shows the flux distribution at these various special points.

Figure III
S_{2} approximation to the vector flux distribution

2. A second boundary condition is that at the outside boundaries of the reactor there exists no inward flux. In order to satisfy this requirements, an extra set of grid points is placed just outside these boundaries, and at these points the vector flux whose argument describes inwardly moving neutrons is assumed to be zero. Note, however, that leakage does exist at these fictitious points and at the outside boundary points of the reactor.

H
${ }_{i}$
\bar{s}_{h}

S s

Values obtained by differencingnind integration of the transport equation over η, and defined by Equation (7a to 7d) of Appendix A

Valuas depending upon the quantized values of μ and defined by Equation (7e and 7f) of Appendix 1 .

Values obtained by the use of the Gauss quadrature approximation to sum the flux over μ ispacesce. defined by Equation (13) Appendix A.

Values obtained by the use of the S_{2} approximation to sum the flux over Y space, defined by Equation (12) Appendix A.
mean radius between two adjacent grid points

Neutron source

Fraction of fission neutrons which are produced in a particular energy group ℓ.

Number of neutrons produced per fission.

The probability per unit length of neutron travel that 2 neutron is scattered in group k and that a neutron emerges in group l from the scattering event.
Σ_{I}
Macroscopic fission cross section
Σ
$\phi(r, z, \mu, \eta, \nabla)$ neutron flax which is classified according to speed, v, colatitude and azimuthal direction, cosines μ and η, and position r and z 。
Δ
Δ
spacing of grid in the axial direction.
m
μ
cosine of the angle θ between the axis and the direction in which neutrons move. See Figure I Appendix A.
n
Cosine of the angle ψ. See Figure I Appendix A.
ω See defining equation, page A-12 Appendix A.

Nomenclature

Superscripts and subscripts
i
f
j
m
e
k
n
h

A computer program is a sequence of logical instructions telling the computer what mathematical operations are to be performed on the data. Therefore, there are two groups of inputs, the data and the instructions. The data fed into the computer are stored in the fast, core memory if there is sufficient room. When the space is not adequate, some of the data are stored in magnetic drums. The only difference in the two storage processes is that the data in the drum takes longer to locate and bring into the core memory. Each mumber or piece of data is stored in a register or cell the location of which is designated by a number called the address of that register. The instructions are stored in sequence and are performed in the order in which they are stored unless the program directs otherwise. No umsed registers are permitted to interrupt the storage as these will stop the computer.

The instructions given to the computer consist of two parts, the operation and the address sections. The operation section is first and uses letters to tell the computer the mathematical operation to be performed. The address section gives the address of the register containing the data on which the operation is to be performed. The instructions recognized by Whirlwind I are listed in the glossary.

For Whisiwind I there are many useful devices that make the progranming much simpler- A few of these devices used in this program are floating addresses, preset paramoters, and subroutines.

Probably the most useful device is the floating address. This floating address or "flad" is used to eliminate the necessity of referring to the absolute register address in the core memory when
writing the program. The absolute register address of any part of the program must be known primarily so that the initial or final. instruction of data is not placed in a register containing part of the subroutines fixed in the memory of the computer.

In the program key instructions on which mathematical operations are to be performed or which will be referred to later in the program are given floating addresses. These addresses consist of a letter and a number, for example $a l_{,}$a2, etc. Any letter except 0 and ell may be used and the sum of all the numbers following these letters may not exceed 255 When the program is read into the computer, it will assign absolute addresses or register numbers to these flads. A table of the floating addresses is produced by the computer with the solution unless it is specifically suppressed in the computer. This table gives the absolute address of every assigned floating address and is particularly helpful in thouble shooting a faulty program.

Another useful device is the preset parameter. These are numbers other than data that are used in the program. Preset parameters are frequently used to designate the number of times that a calculation is to be performed. Preset parameters must be assigned a value before they are used, and they will retain this value until it is specifically changed. Preset parameters are designated by two letters and a number. The first letter must be a $p_{2} u$ or z and the second letter and the number may be anything, except the letters o and el may not be usedo

A third useful device is the subroutinge. Its usefuiness comes from the fact that it is a complete entity in itself and may be constructed and trouble shot independently. $F_{\text {or }}$ the build up of a complete
program it is possible to start with one of the most basic mathem matical operational sequences that will be performed repeatedly, program it, perform the hand calculations of the sequence and then place the routine on the computer. Modification of the subroutine or correction of the hand calculations must contimue until the results of both are in agreement.

In arranging these subroutines in the main program extreme care must be used. The main program must be interrupted to call the subroutine into use and after the subroutine has performed its function it must direct the computer back to the proper place in the main program. An example of a subroutine is as followss

Main program
-
isu p 10
tl. isp $\times 4$
ime a 5
-
i STOP
$\times 4$, ita $\times 5$
ica m 2)
its a 7
take the next instruction from register x 4 and contimue from there forms product of ($\circ \mathrm{m} 2$) and (25) end of program transfer into the address section of the instruction in register $\times 5$, the address that is one more than the address t.
places m 2 in a 7
$\left.\begin{array}{l}\text { ics } m \text { 2 } \\ \text { its a 8 }\end{array}\right\} \quad$ places $-m 2$ in a 8
$x 5$, isp 0 returns to main program one register after $t I_{8} i_{0} e_{0}$ register containing imr a 5.

Since the numbers used in this program were over four decimal digits in length, floating point arithmetic was required. In this system two registers are required to express a number. Each of these registers is capable of containing 16 bits of binary number information. The first bit of the first register expresses the sign of the mumber and the first bit of the second register expresses the sign of the exponent of 2. Six bits are required to locate the binary point of the number leaving 24 bits to express the actual number. In certain stages of the program it is desirable to handle single length register numbers. The instructions for the handing of these numbers are similar to those for double length registers except that the i does not precede the instruction. When operating on double length registers the computer is said to be in the interpretive mode, when on single length registers it is in the Whirlwind mode. To enter the interpretive mode from the Whirlwind mode it is necessary to use the instruction "IN" and to reverse the direction it is necessary to use the instruction "OUT".

TERM	DEFINITION
ica x	clear MRA and add contents of register x .
ics x	clear MRA and subtract contents of register x .
iad x	add contents of register x to what is in MRA.
isu x	subtract contents of register x from what is in MRA.
imr x	multiply what is in MRA by the contents of register x and round off product to fifteen digits.
idv x	divide contents of MRA by the contents of register x 。
its x	transfer the contents of the MRA to register x losing what was previously in register x. The MRA remains unchanged.
iex x	exchange the contents of the MRA with the contents of register x .
isp \times	take the next instruction from register x. Does not affect the contents of the MRA' An unconditional instruction used to break the sequence of operations.

41
icd x
if the contents of the MRA are negative, take the next instruction from register x and continue from there. If the contents of the MRA are positive, take the next instruction in sequence. A conditional instruction used to break the sequence of operations.
select counter number x. Without this instruction counter zero will be used whenever $+C$ appears.
cycle reseto Sets index register of counter to zero and criterion register to $\mathrm{X}_{\text {。 }}$
cycle transfer. Increases contents of index register by one. If contents of index register greater or equal to contents of criterion register, set index register to zero and do next instruction in sequence. If contents of index register less than contents of criterion register, take next instruction from register $\mathrm{x}_{\text {. }}$
increase the contents of index register by number \mathbf{x}.
decrease the contents of index register by number x.
iti x
iat x
ita x
iTOA
iMOA
iSOA
iFOR
this instruction provides an automatic device for obtaining a suitable layout of output data in columns, lines or blocks.

Note: The above output instructions are usually followed by a series of letters and numbers that indicate the desired form and arrangement of the output.

Computer Logic

The program starts at 1 in the main program by entering the data, program and preset parameters. The initial calculations are with the reactor radius equal to the value placed in register r. 4 . With this radius the program then shifts to the flux iteration and convergence test, 4. In this routine parameters are set to control the number of iterations allowed at one radius and to traverse the computer thru all points in the reactor. With a value of j and m, defining 2 point in the reactor, the program shifts to FIux, 4.5, where the addresses on the drum of the required data are calculated, the data entered in the fast memory and the routine appropriate to the point is selected and control is shifted to that routine。

The first calculation at any point is the scalar flut for $2 l l$ three groups and the second is the input from fission and scattering from an upper energy group. The first point to be calculated in each cgele is the origin. This is the point of normalization of the inputs to the fast group. The normalization constant ${ }_{9} \gamma$, is defined as the reciprocal of the fast group input at the origin. With this constant 211 other inputs (211 groups and all points) are normalized.

As explained in the previous section of the procedure certain quadrants of the flux are required for each point depending on its locationo Prior to sequencing to another point all fluxes appropriate are calculated.

This fast source imput is then compared to the previous fast source imput. If the new value is not within a set specifiod fractional value of the previous value a negative quantity is introduced into s 10.

When the entire grid has traversed 2 check is made to see if the maximum allowable attempts at source convergence have been made. If this maximum muber has been made the computer nill stop. If not a check will be made of switch $s 10$ As indicated in roptine 4 , anether cyele will be made thru the reactor if 10 is negative, and if $s 10$ is positive control will return to the main progran to repeat the above procedure based on the radius placed in 3 .

When 2 gama is calculated for this radius, control is again returned to the main progsam but at a different pointo $A l l$ subsequent returns are at this point. A check is made to determine if the maximem allowable muber of iterations of radil have been attempted.

A test for criticality is made to see if gamma is within a specified tolerance of unity. If it is nots 2 new radius is found by extrapolation or interpolation based on the most recent values of R and γ and the best previous value of R and γ. In this determination of radius, the gama that is closer to unity and the associated radius are preserved for use in later extrapolation. The previously outlined calculations are repeated with this radius. If γ lies within the specifled tolerance of unity control remains in the main routine and the print-out routine, which has been stored in the drum, is entered into the fast memorys.

The computer is then sequenced thru the grid calculating and printing out scalar fluxes at each point for each group.

If the flux pattern is not as desired the properties of the regions are changed and a new tape of data cut. The program is then run again to determine the flux pattern.

Flux iteration and convergence test Enter from main routine or radius extrapolation (9)

Goid Point Sensing
Enter from Address calculation and data entry (45.1) or calculate drum address of required data and enter data (8.1)

Origh program
45.3

Enter from Grid Point
Sensing (45.2), origin
exit

Midplane program
Enter from Goid Point Sensing (45.2), midplane exit

453.5

Exit to
Throw source cono vergence switch (45.7)

Centerojine progran
Enter from Groid Point
Sensing (45.2), centerline
axit

Interpior point program Enter from Groid Point sensing (45.2), gener2l point exit

Thosow source convergence switch Enter from origin, midplane, centerline or interior point psograme (45.0 to 45.6)

Exit to
Place flux in drum (45.8)

```
Groid Traverst
Enter from FIux (4.5) or Print (8.2)
```


Exit to	Esit to
γ iteration check (4.7) Flus (4.5) or or Stop Drum 2ddress calcquation (8.1)	

Print out routine
Enter from place proint out routine in MRA (7)

RESULTS

Numerous runs of subroutines and of the entire program were made on Whirlwind with the program contained in Appendix B. This program was adapted for a reactor radius of 75 and 95 centimeters and a height of 168 centimeters. The grid placed on the reactor was 26 by 6 grid giving for the first trial radius a grid size 15 cm by 34 cm .

The final run had programmed 2 first trial radius of 75 cms the maximum allowable number of iterations with a constant radius was twenty and the tolerance of convergence of the fast source input was three percent. The computer stopped, as programmed, upon completion of twenty iterations at a set radius when the fast neutron input at 211 points was not with the tolerance specified. The computer running time per iteration is two minutes. The computed values of scalar flux at each point and energy doup were printed out for each iteration. The normalizing constant decreased from 0.27 for the first iteration to 0.01 for the twentieth. Some values of the scalar flux at the following point were negative
2) interiace of core and reflectors,
b) reflectors
c) outside boundary of reflector.

DISCUSSION OF RESULTS

The negative values computed for scalar fluxes are known to be unrealistic. The possible causes of this error are

1) improper programming of the theoretically derived flux equation,
2) grid size being excessive.

The theoretical background for the flux equations is sound, and these equations have been programmed for other geometrical arrangements [17] on other computers and give correct flux distributions . The need for a complete hand calculation is well realized, but due to lack of time these hand calculations were not completed fully. Therefore, there is no reason to assume or expect that these equations have been progranmed correctly. To accomplish the required hand calculations, computer verification of the hand calculations, and program trouble shooting it is estimated that another three to four weeks full time would be required.

For accuracy in evaluation of neutron transport equations, the grid spacing should be less than or approximately equal to the mean free path of the neutron. If this condition does not prevail, the accuracy and reliability of the calculations decrease rapidly.

A two fold increase in the number of grid points will increase the time of computation by 2 factor of eight. Any increase in the time required for one iteration thru the reactor is not allowable since now two minutes are required.

The code developed is in the 'interpretative' or 'floating point' mode for Whirlwind, for the reason that this mode is simple to learn and to trouble shoot. Whirlwind has 2lso available 2 Thirirlwind' or 'fixed point' mode in which the speed is increased by 2 factor of roughly 35 . Use of the fixed point mode would make the two dimensional S_{2} calculation on the Whirlwind computer practical.

CONCLIUSIONS

1) The code as presently programmed is incorrect.
2) The grid spacing as used is much too coarse. This difficulty is not inheront in the coded program.
3) The mode of computer operation is unsuitable for an iterative process such as this because it results in 2 eode that progresses too slowly.

RECOMMENDATIONS

1) Prior to the use of any computer a formal or semíformin course in programming should be completed.
2) A grid spacing comparable to the mean free path of the neutron should be selected.
3) The fastest possible mode of calculation on the computer available should be used.
4) For 2 coded program of this difficulty 2 faster machine with 2 much larger fast memory is very desirable.

Appendix A

Development of Equations Using S_{2} Approximation to the Boltzman Equation for Cylindrical Geometry

Equations will be developed for the time independent case using cylindrical geometry.

The vector flux at a point in space is a function of two variables one describes distance along the vertical axis of the cylinder, and the other describes radial distances. The axial variable will be designated as μ and the radial variable as η. From Figure I it can be seen thats $\eta=\cos \psi$
$\mu=\cos \theta$ and
$\sin \theta=\sqrt{1-\mu^{2}}$
$\sin \psi=\sqrt{1-\eta^{2}}$
and where $\hat{\Omega}$ represents the unit
vector in which direction neutrons
travel at a point. Therefore,
$\nabla \phi=\hat{i} \frac{\partial \phi}{\partial z^{\circ}}+\hat{i} \frac{I}{\theta r} \frac{\partial \phi}{\partial \dot{Y}}+\hat{i} \frac{\partial \phi}{z z}$
and $\hat{H}_{\mathrm{i}}^{\mathrm{i}_{r}} \sin \theta \cos \|$ 岩

Figure I

Components of neutron flux at a space point.

$$
\hat{i}_{\theta} \sin \theta \sin \psi \frac{\partial \emptyset}{\partial \psi}+\hat{i}_{2} \cos \theta_{0}
$$

Therororn,

$$
\begin{equation*}
\hat{\Omega} \cdot \nabla \phi=\sin \theta \cos \psi \frac{\partial \phi}{\partial r}-\frac{\sin \theta \sin \psi}{r} \frac{\partial \phi}{\partial \psi}+\cos \theta \frac{\partial \phi}{\partial z} . \tag{1}
\end{equation*}
$$

If we substitute the expression for η and μ which were derived from Figure I in equation I_{3} we find

$$
\begin{equation*}
\hat{\Omega} \cdot \nabla \phi=\eta \sqrt{1-\mu^{2}} \frac{\partial \phi}{\partial r}+\frac{\left(1-\eta^{2}\right)}{r} \sqrt{1-\mu^{2}} \frac{\partial \phi}{\partial \eta}+\mu \frac{\partial \phi}{\partial z} \tag{2}
\end{equation*}
$$

The quantity \hat{R}. \emptyset represents the leakage of neutrons out of an element of volume per unit time in the direction $\hat{\Omega}$ per unit solid angle.

In the fime independent case this leakage plus the rate of loss of neutrons, इ. \varnothing_{3} per unit time must equal the source strength, $S_{\text {. }}$ In problems in which cross sections vary with energy and neutrons alter their speeds. the multigroup approximation of the Boltzmann equation is introduceds ${ }^{[6]}$
$\frac{\partial^{\ell} \phi}{\partial r}+\frac{1-i^{2}}{r} \frac{\partial^{\ell} \phi}{\partial \eta}+\frac{\mu}{\sqrt{1-\mu^{2}}} \frac{\partial^{2} \phi}{\partial z}=\frac{s}{\sqrt{1-\mu^{2}}}-\frac{\Sigma^{\ell} \phi}{\sqrt{I-\mu^{2}},}$
where ${ }^{\prime} \Sigma$ is the total cross section within the energy group ℓ_{0}^{0} and ℓ_{S} is the neutron source term which results from fission and energy degradation of the total vector flux at the point. Slowing down is incorporated into the source term.

Equation 3 is identical in form to the time dependent multigroup equation for spherical geometry in which the z term is replaced by 2 term representing the rate of change of flux with respect to time.

The S_{n} approximation is a method of evaluating integrals over a variable in which the variable is quantized into n intervals and intermediate values of a function of the variable are approsimated by a straight line between points at the boundaries of the intervalso We shall consider η space as the first variable which will be inte groted. The flux at arg point

$$
\begin{equation*}
\phi(r, z, \eta)=\frac{\eta_{-\eta_{i-1}}^{\eta_{i}-\eta_{i-1}} \phi\left(r, z, \eta_{i}\right)+\frac{\eta_{i}-\eta_{i}}{\eta_{i} \eta_{i-1}} \phi\left(r_{2}, z, \eta_{i-1}\right)}{} \tag{4}
\end{equation*}
$$

For the S_{2} approximation $i=+I_{,} O_{0}$ and -1_{0} If we denote $\eta_{i}-\eta_{i-1}$ as Δ_{i} and $\phi\left(r_{2} z_{g} \mu_{s} \eta_{i}\right)$ as ϕ^{i} we obtain

$$
\phi=\frac{\left(\eta-\eta_{i \infty 1}\right)}{\Delta_{i}} \phi^{i}+\frac{\left(\eta_{i}-\eta\right)}{\Delta_{i}} \phi^{i-1}
$$

If we substitute this in equation 3, we find

$$
\begin{align*}
& \frac{\eta\left(\eta_{i} \eta_{i-1}\right)}{\Delta_{i}} \frac{\partial^{l} \phi^{i}}{\partial r}+\frac{\eta\left(\eta_{i}-\eta\right)}{\Delta_{i}} \frac{\partial^{l} \phi^{i-1}}{\partial r}: \frac{\left(1-\eta^{2}\right)\left(\eta^{-} \eta_{i-1}\right)}{\Delta_{i}} \frac{\partial^{l} \phi^{i}}{\partial \eta} \\
& +\frac{\left(1 \infty \eta^{2}\right)\left(\eta_{i}-\eta\right)}{\Delta_{i}} \frac{\partial^{l} \phi^{i-1}}{\partial \eta}+\frac{\mu\left(\eta^{1}-\eta_{i-1}\right)}{\sqrt{1-\mu^{2}} \Delta_{i}} \frac{\partial^{l} \phi^{i}}{\partial z}+\frac{\mu\left(\eta_{i}-\eta\right)}{\Delta_{i}} \frac{\partial^{l} \phi^{i-1}}{\partial z} \\
& <\frac{\ell_{S}}{\sqrt{I \sim \mu^{2}}}-\frac{{ }^{\ell} \Sigma\left(\eta^{-} \eta_{i-1}\right)^{\ell} \phi^{i}}{\Delta_{i} \sqrt{I \Delta \mu^{2}}}=\frac{\ell_{\Sigma}\left(\eta_{i}-\eta\right) \phi^{i-1}}{\Delta_{i} \sqrt{1-\mu^{2}}} . \tag{5}
\end{align*}
$$

Since the source ${ }_{2} S_{3}$ is isotropic, integrating this expression over ? from $\eta_{i o l}$ to η_{i}, we obtain n equations in the form

$$
\begin{align*}
& b_{i} \frac{\partial^{l} \phi^{i}}{\partial x^{2}}+{c_{i}}_{i}^{\ell}+h \frac{\phi^{i}}{\partial z}+g^{l} \Sigma^{l} \phi^{i}+d_{i} \frac{\partial^{l} \phi^{i-1}}{\partial r}=c_{i} \frac{\phi^{i-l}}{r}+ \\
& +h \frac{\partial^{l} g^{i-1}}{\partial z}+g^{l} \sum_{\phi^{l} \phi^{2}-1}^{i} g S \text {. } \tag{6}
\end{align*}
$$

where

$$
\begin{align*}
& b_{i}=\frac{2 \eta_{i}+\eta_{i-1}}{3} 0 \tag{Fa}\\
& c_{i}=\frac{2}{3 \Delta_{i}}\left(3-\eta_{i}^{2}-\eta_{i}-\eta_{i-1}-\eta_{i-1}^{2}\right)_{8} \tag{Tb}
\end{align*}
$$

$$
\begin{array}{ll}
\alpha_{i}=\frac{\eta_{i}+2 \eta_{i-1}}{3}, & \text { (7c) } \quad h=\frac{\mu}{\sqrt{1-\mu^{2}}} \\
e_{i}=2 & \text { (7d) } \quad g_{f}=\frac{1}{\sqrt{1-\mu^{2}}}
\end{array}
$$

A different method of finite differencing is used for the other directional variables A, since use of an expression analogous to (4) for μ in the integration of the equation (5) with respect to μ would result in an extremely complex expression. Instead, the equation (5) is directly quantized with respect to μ giving the result |g

$$
\begin{align*}
& b_{i} \frac{\partial^{\ell} \phi^{i, f}}{\partial x}+c_{i} \frac{\ell_{\phi^{i, f}}}{r}+h_{f} \frac{\partial^{\ell} \phi^{i, f}}{\partial z}+g_{f}^{l} \Sigma \phi_{\phi^{i}, f} . \tag{8}
\end{align*}
$$

We may now proceed to evaluate the source integral at a point For isotropic scattering and three energy groups of neutrons

$$
\begin{equation*}
s(x, z)=r_{p}^{l} \sum_{k=1}^{3} \sum_{f}{ }_{f}^{k^{k}} \phi\left(x_{g} z\right)+\sum_{k=1}^{3} l_{k} \tau^{k} \phi(x, z)_{2} \tag{9}
\end{equation*}
$$

where

$$
{ }_{\phi(x, z)} \frac{1}{2 \pi} \int_{o 1}^{+1} d \dot{1} \int_{-1}^{+1} \phi(r, z, \mu, \eta) \frac{d \eta}{\sqrt{1-\eta^{2}}}
$$

As in equation (4) $\varphi(r, z, \mu, \eta)$ is approximated by

$$
\phi\left(r, z, \mu_{2}\right)=\frac{\eta-\eta_{i-1}}{\Delta_{i}} \phi^{i}(r, z, \mu)+\frac{\eta_{i}-\eta}{\Delta_{i}} \phi^{i-1}(r, z, \mu),
$$

and

$$
\begin{align*}
& \left.{ }^{k_{\phi(r, z}}{ }^{1} \mu\right)=\frac{1}{2 \pi} \sum_{i=0}^{2}\left\{\phi^{i}\left[\int_{i-1}^{\eta_{i i}} \frac{\eta d \eta}{\sqrt{1-\eta^{2}}}-\eta_{i-1} \int_{i-1}^{\eta_{i}} \frac{d \eta}{\sqrt{1-\eta^{2}}}\right]\right. \\
& \left.+\varnothing^{i-1}\left[\eta_{i \eta_{i \infty 1}}^{\eta_{i}} \frac{d \eta}{\sqrt{1 \infty \eta^{2}}}-\sum_{i=1}^{i_{i=1}} \frac{\eta d \eta}{\sqrt{1-2}}\right]\right\} . \tag{10}
\end{align*}
$$

Upon integration

$$
\begin{align*}
& k_{\phi(r, q, \mu)}=\frac{1}{2} \sum_{i=0}^{2}\left[\frac { \phi ^ { i } } { \pi \Delta _ { i } } \left\{\sqrt{1-\eta_{i-1}^{2}}-\sqrt{1-\eta_{i}^{2}}+\eta_{i=1} \sin ^{-1} \eta_{i-1}\right.\right. \\
& \left.\left.\infty \eta_{i \sim 1} \sin ^{-1} \eta_{i}\right\}\right]+\frac{1}{2}\left[\frac { \phi ^ { i - 1 } } { \pi \Delta _ { i } } \left\{\eta_{i} \sin ^{-1} \eta_{i}\right.\right. \tag{II}\\
& \left.\therefore \eta_{i} \sin ^{-1} \eta_{i=1}+\sqrt{1-\eta_{i}^{2}}-\sqrt{1 \infty \eta_{i=1}^{2}}\right\}
\end{align*}
$$

If values of $\eta_{i}=+1,0$ and $-1\left(S_{2}\right.$ approximation) are substituted in the above expression we find that

$$
\begin{equation*}
{ }^{k} \phi(r, z, \mu)=\frac{1}{2 \pi} \sum_{i=0}^{2} P_{i} A^{i}(r, z, \mu), \tag{12}
\end{equation*}
$$

where $P_{0}=0.3183, P_{1}=0.3634$, and $P_{2}=0.3183$.
By use of the Gauss quadrative method ${ }^{[8]}$ the remaining integral can be evaluated in the form of a sum of the products of coefficient times the vector flux where μ_{f} values are the $n+2$ positive roots of

$$
P_{n+2}\left(\mu_{p}\right)=00
$$

The table below lists the values of $\underset{f}{\mu}$ and the coefficient H_{f} used

f	μ_{f}	\mathcal{H}_{f}
0	-0.8611363	0.3478548
1	-0.3399810	0.6521452
2	+0.3399810	0.6521452
3	+0.8611363	0.3478548

Therefore, since $H_{0}=H_{3}$ and $H_{1}=H_{2}$ the scalar flux at a point is

$$
\begin{equation*}
{ }^{k} \phi(r, z) \sum_{f=0} H_{f} \sum_{i=0}^{2} P_{i} k_{\phi}^{i}{ }^{f}(r, z), \tag{23}
\end{equation*}
$$

and the source term equals

$$
\begin{equation*}
S=\gamma^{l} p_{k=1}^{3} k_{f} k_{\phi(r, z)}+\sum_{k=1}^{3} l k_{\tau} k_{\phi(r, z)_{2}} \tag{14}
\end{equation*}
$$

where
p is the propability that a fission neutron will have an energy ℓ and ${ }^{l k}$ ris the probability that a neutron having an energy k will be scattered into the energy group $\ell, k \geq l_{0}$

The scattering probability requires further explanation. We define $\mu_{\ell_{k}}$ as the probability that a neutron which is scattered in the $k^{\text {th }}$ group will land in the $l^{\text {th }}$ group $_{9} k$ as the energy group in which the scattering occurs (I for fast, 2 for epithermal and 3 for thermal) and ℓ as the energy group into which the neutron is scattered. The energy range covered by scattered neutrons is $E a E_{2}$ and the probability of landing in the interval ΔE is $\frac{\Delta E}{E-\alpha E}$. Let E be the energy of the neutron before scattering。

$$
\mathrm{E}_{\mathrm{k}+1}<\mathrm{E}<\mathrm{E}_{\mathrm{k}}^{0}
$$

The neutron flux per unit energy interval is $\frac{d \phi}{d E}$.
Thon $\frac{d \phi}{d E} d E \Sigma_{S}(E)$ is the number of neutrons scattered per unit volume and per unit time, ${ }^{[9]}$ but

$$
\begin{equation*}
\frac{d \phi}{d E}=\frac{q}{\sum_{s} E \xi} \tag{15}
\end{equation*}
$$

Therefore, $\frac{d \phi}{d E} d E \quad \Sigma_{S}(E)=\frac{q}{\xi} \frac{d E}{E}$
$\frac{e^{-E} l+i}{E(1-a)}$ is the probability a neutron will land in the l th group. ${ }^{\ell k} Y$ is the number of neutrons scattered in the k th group that land in the l th group. Since the absorption, sources and leakage in a large thermal reactor are small, the slowing down density q_{9} is rather constant over an onorgy group. This fact is used to compute the numo ber of neutrons scattered from the group k to groupl: [10]

> The equations for each case are listed belowo

$$
\begin{align*}
& \text { Case } \\
& \text { 2. } E_{\operatorname{lon} I}{ }^{2} E_{k} \tag{16a}\\
& \ell_{Y}=\frac{{ }_{\Sigma} \quad \text { Equation }}{(1-a)\left[\ln \left(E_{k} / E_{k+1}\right)\right.}(E-E+1)\left(\frac{I}{E_{k+1}}-\frac{I}{E_{k}}\right) \\
& \text { 2. } E_{\ell}>a E_{k} \\
& \ell k_{Y}=\frac{{ }_{\Sigma} s_{s}}{(1-a) \ln \left(E_{k} / E{ }_{k+1}\right)}\left[\frac{E_{l}-E_{l+1}}{E_{k+1}}+a-\frac{E_{l}}{E_{k}} .\right. \\
& \left.-a \ln \left(\frac{a E_{k}}{\frac{E_{l+1}}{}}\right)\right] \tag{16b}
\end{align*}
$$

$$
\begin{align*}
& \text { 3. } E_{\ell}>\alpha E_{k} \\
& \mathrm{E}_{l+1}<\alpha \mathrm{E}_{\mathrm{k}+1} \\
& \ell k_{T}=\frac{E_{s}}{(I-\alpha) \ln \left(E_{k} / E_{k+1}\right)}\left\{E_{\ell}\left[\frac{1}{E_{k+1}}-\frac{\alpha}{E_{k}}\right]\right. \tag{16e}\\
& +\alpha \ln \frac{E_{k}}{E_{k+1}} \\
& \text { 4. } \alpha E_{k+1}<E_{l}<\alpha E_{k} \tag{16d}\\
& \left.{ }_{\ell+1}<\alpha E_{k+1} \quad \ell k_{r}=\frac{k_{S}}{(1-\alpha) \ln \left(E_{k} / E_{k+1}\right.}\right\}\left\{E_{l}\left[\frac{1}{E_{k+1}}-\frac{\alpha}{E_{l}}-\alpha \ln \frac{E_{1}}{\alpha E_{k+1}}\right]\right\} \\
& \text { 5. } E_{l}<\alpha E_{k+1} \quad l_{\gamma}=0 \tag{16e}
\end{align*}
$$

For the cases where the scattering occurs within the energy group we find

$$
\begin{align*}
& E_{\ell+2}>a_{\ell} \tag{16f}\\
& \ell_{\tau}=\frac{\sum_{s}}{1-a}\left[1+\frac{E_{\ell+1}-E_{1}}{E_{l} \ln E_{l} / E_{l+1}}\right. \\
& { }_{\sim}^{\ell}=\left[1-\frac{\xi}{\ln E_{l} / E_{l+1}}\right] \mathrm{k}_{\Sigma_{s}}
\end{align*}
$$

We may now proceed to evaluate equation 4 by integrating over the r and z variables. However, before doing so we must consider the direction in which integration should be carried out. It is always best to integrate in the direction of neutron flow since any errors produced in the process of integration will be diminished as we proceed further in this direction 。

If integration is carried out in a direction opposite to that of neutron flow, any errors produced will be magnified. [7]

We must now difference our equations with respect to r and z_{0} We can arrange terms in equation (8) in order to facilitate the integrao tion. Thus equation (8) becomes

$$
\begin{align*}
& {\left[h_{f} \frac{\partial}{\partial z}+b_{i} \frac{\partial}{\partial r}\right]\left[\ell_{\phi^{j}{ }^{j} f}+\ell_{\phi^{i-1}, f}\right]=-\left[g_{f} \ell_{\Sigma}+\frac{c_{i}}{r}\right] \ell \phi^{i,{ }_{f} f}} \\
& -\left[g_{f} l_{\Sigma}-\frac{c_{i}}{r}\right] \ell_{\phi}^{i-1, f}+\left[b_{i}-d_{i}\right] \frac{\partial^{l} \phi^{i-1} I_{g}}{\partial r}+e_{i} g_{f} \quad l_{S} \tag{17}
\end{align*}
$$

We must now further divide the results of the integration into two separate cases:

Case A © The component of velocity in the r direction is less than the component of velocity in the a direction.

Case B - The component of velocity in the r direction is greater than the component of velocity in the z direction.

If we consider Case A_{3} and difference r and z as illustrated in the figure below, we obtain four distinct subcases. These will be classified in
 accordance with the direction of travel being determined by the signs of b_{i} and h_{f}. A positive sign indicates a direction of travel away from the center of the core. The various cases are listed in Table I_{0}

Table I

$$
\begin{aligned}
& \text { In all } A \text { cases }\left|b_{i}\right|<\left|h_{f}\right| \\
& \text { In all } B \text { cases }\left|b_{i}\right|>\left|h_{f}\right|
\end{aligned}
$$

```
Subcase
AI, BI
AR, BR
AB, B3
\(\mathrm{Al}_{3}, \mathrm{~B} 4\)
```

Considering subcase A-3 and integrating equation 5 and knowing that

Figure IV
Position Mesh for Case A

and

where $\Delta_{j}=r_{j}-r_{j-1}$ and $\Delta_{m}=z_{m}-z_{m=1}$
we obtain the following equation

$$
\begin{aligned}
& \left.+\ell_{\phi_{j, m-1}^{j-1, f}}-\ell_{\phi_{j-1, m-1}^{j} f}-\phi_{j-1, m-1}^{j-1, f}\right]=-\left[g_{f} \ell_{\Sigma_{j-1}^{m-1}}\right.
\end{aligned}
$$

$$
\begin{align*}
& \frac{1}{\Delta}\left[\frac{b_{j}-q_{i}}{2}\right]\left[\ell_{\phi_{j, m}^{j-1, f}}+\ell_{\phi_{j, m-1}^{i-1, f}}-\ell_{\phi_{j-1, m}^{i-1, f}}-\ell_{\phi_{j-1, m-1} i-1, f}\right] \\
& +\frac{e_{i} g_{f}}{2}\left[l_{S_{j, m}}+\ell_{S_{j-1, m-1}}\right] \tag{18}
\end{align*}
$$

Where $\sum_{j \infty l}^{m \infty l}$ is the total cross section of the material at the center of the grid in figure 48 i.e.og the material to the left and below the j om point and $\bar{m}_{j=1}$ is $\frac{r_{j}+r_{j \neq I}}{2}$.

The radial direction of integration is determined by the sign of η, i.s.0, by the sign of the b_{i} or d_{i}. Consequently, the signs of $\eta_{,} b_{i}$, d_{i} and Δ_{j} all change together. Likewise, the direction of integration axially is determined by the sign of $\mu_{\text {g }}$ i.e., by the sign of h_{f} Consequently the signs of $\mu_{g} h_{f}$ and Δ_{m} all change together. If we use absolute magnitude signs for these quantities all Case A equations will be identical insofar as the signs of various terms are concerned. Similarly, $2 l l$ Case B equations will be identical

If we now add the following expressing to both sides of equation (18)

$$
\left|\frac{b_{1}}{\Delta_{j} \mid}\right|\left[\ell_{\phi_{j-1, m-1}^{i, f}}+\ell_{\phi_{j-1, m-1}^{j-1, f}}-\ell_{\phi_{j, m}^{i, f}}-\ell_{\phi_{j, m}^{i-1, f}}\right],
$$

$$
\begin{equation*}
-\left[g_{f}^{l} \Sigma_{j-1}^{m-1}+\frac{c_{i}}{\bar{r}_{j-1}}\right]\left[\frac{\ell_{\phi_{2, m}^{i}, f}+l_{\phi_{j-1, m-1}^{i}, f}}{2}\right]=\left[g_{f}^{\ell} \sum_{j-1}^{m-1}\right. \tag{18a}
\end{equation*}
$$

$$
\left.+\frac{c_{i}}{\bar{r}_{j-1}}\right]\left[\frac{\ell_{\phi_{j, m}+1, f}+\ell_{\phi_{j-1, f}}}{2}\right]+\left[\frac{\left|b_{j-1, m-1}\right| d_{i} \mid}{2\left|\Delta{ }_{j}\right|}\right]\left[\frac{\ell_{\phi_{i-1, f}}}{{ }_{j, m}+\ell_{\phi_{j, 1, f-1}}}\right.
$$

$$
\left.-\ell_{\phi_{j-1, m}^{i-1, f}}-\ell_{\phi_{j-1, m-1}^{i-1, f}}\right]+\frac{e_{i} g_{f}}{2}\left[\ell_{\bar{s}_{j, m}}+\ell_{s_{j-1, m-1}}\right]
$$

$$
+\frac{\left|b_{i}\right|}{\left|\Delta_{j}\right|}\left[\ell_{\phi_{j-1, m-1}^{i}, f}+\ell_{\phi_{j-1, m-1}^{i-1, f}}-\ell_{\phi_{j, m}^{i, f}}-\ell_{\phi_{j, m}^{i-1, f}}\right]
$$

If this expression is multiplied by $\left|\Delta_{j}\right| \omega^{i, f}$ where $\left.\left|\Delta_{j} \omega^{i t}=\frac{\left|b_{i}\right|}{\left|h_{f}\right|}\right| \Delta_{m} \right\rvert\,$ we obtain

$$
\begin{align*}
& \left|b_{i}\right|\left(1-\omega^{i, f}\right)\left[\ell_{\phi_{j, m}^{j}, f}+\ell_{\phi_{j, m}^{i-1, f}}-\ell_{\phi_{j, m-1}^{i}, f}-\ell_{\phi_{j, m-1}^{j-1, f}}\right]= \\
& \omega^{i, f}\left[\left|b_{j}\right|+\frac{|\Delta j|}{2}\left(g_{f} \ell_{\Sigma_{j-1}}^{m-1}+\frac{c_{i}}{\bar{r}_{j-1}}\right)\right] \ell_{\phi_{j, m i}^{i}, f}^{i}+A_{3} \omega^{i, f} . \tag{18b}
\end{align*}
$$

Where

$$
\begin{align*}
& A_{3}=\left[\left|b_{i}\right|-\frac{\left|\Delta_{j}\right|}{2}\left(g_{f}^{l} \sum_{j-1}^{m-1}+\frac{c_{i}}{\bar{r}_{j-1}}\right)\right] \quad \varnothing_{j-1, m-1}^{j, f} \\
& -\left[\left|b_{i}\right|+\frac{\Delta j \mid}{2}\left(g_{f} \ell_{j-1}^{m-1}-\frac{c_{i}}{r_{j-1}}\right)\right] \ell_{j, m} \\
& \left.\left.+\left[\left|b_{i}\right|-\frac{\Delta_{j}}{2} \left\lvert\,\left(g_{f} \ell_{j-1}^{m-1}-\frac{c_{i}}{r_{j-1}}\right)\right.\right] \ell_{j-1,1, m-1}+\frac{e_{i} g_{1}}{2} \right\rvert\, \Delta\right]_{j}\left[l_{\bar{S}_{j, m}}+\bar{S}_{j-1, m-1}\right] \\
& +\left(\left[\frac{b_{1}-\left|d_{j}\right|}{2}\right)\left[\ell_{\phi_{j-1,1}}+\ell_{j, m} \ell_{j, m-1}-\ell_{j-1, m}-\ell_{j-1,1} \ell_{j-1, m-1}\right]\right. \tag{18c}
\end{align*}
$$

And finally transposing terms in equation (18b) we obtain an expression for the vector flux at the point jg m.

$$
\ell_{\phi_{j, m}^{i, f}}=\frac{b_{i}\left(1-\omega^{i, f}\right)\left(\ell_{\phi_{j, f}}+l_{\phi_{j, m-1}}^{i-1, f}-l_{j, m-1}\right.}{\left.\left|b_{i-1, f}\right|+\omega_{j, m}\right)+\omega^{i, f} \frac{f_{j}}{2}\left(\ell_{f} \Sigma_{j-1}^{m-1}+\frac{c_{i}}{r_{j-1}}\right)}
$$

By use of similar procedures for developing the equations for the three remaining A subcases we obtain the three equations on the following pages.

For subcase A-4
where

$$
\begin{align*}
& A_{4} \cdot\left[\left|b_{i}\right|-\frac{|\Delta, j|}{2} \left\lvert\,\left(g_{f}^{\ell} \Sigma_{j+1}^{m-1}+\frac{c_{1}}{\bar{r}_{j+1}}\right)\right.\right] \ell_{\varnothing_{j+1, m-1}} \\
& -\left[\left|b_{i}\right|+\frac{\Delta j}{2} \left\lvert\,\left(\ell_{f} \Sigma_{j+1}-\frac{c_{i}}{\overline{r_{j+1}}}\right)\right.\right] \ell_{j, 1, f} \\
& +\left[\left|b_{i}\right|-\frac{\left|\Delta{ }_{j}\right|}{2}\left(g_{f}^{\sum_{j} m-1}-\frac{c_{1}}{\bar{F}_{m+1}}\right)\right] \ell_{\phi_{j+1,1} m-1} \\
& +\frac{\ell_{i} g_{f}}{2}\left|\Delta_{j}\right|\left[\ell_{j, m} \ell_{j} \bar{S}_{j+1, m-1}\right]+\left[\frac{\left|b_{i}\right|-\left|d_{i}\right|}{2}\right]\left[\ell_{\varnothing_{j, m}}+\ell_{j-1, f}\right. \\
& \left.-\ell_{\phi_{j+1, m}-1,}-\ell_{\phi_{j+1,1}}\right] . \tag{19b}
\end{align*}
$$

For subcase A-1
where

$$
\begin{aligned}
& A_{1}=\left[\left|b_{i}\right|-\frac{\left|\Delta_{j}\right|}{2}\left(\frac{\ell_{f} \sum_{j+1}^{m+1}}{\sum_{j+1}}+\frac{c_{i}}{\bar{F}_{j+1}}\right)\right] \ell_{j+1, m+1} \\
& -\left[\left|b_{i}\right|+\frac{\left|\Delta_{j}\right|}{2}\left(\frac{\ell^{m+1}}{g_{f} \Sigma_{j+1}}-\frac{c_{i}}{\bar{r}_{j+1}}\right)\right] \ell_{\ell_{j, I}}
\end{aligned}
$$

$$
\begin{align*}
& +\left[\frac{\left|b_{j}\right|-\left|d_{j}\right|}{2}\right]\left(\ell_{\phi_{j, m}^{i-1, f}}+\ell_{\phi_{j, m+1}^{i-1, f}}-\ell_{j+1, m}-\ell_{\phi_{j+1, m+1}}\right) \tag{20b}
\end{align*}
$$

For subcase A-2
where

$$
A_{2}=\left[\left|b_{i}\right|-\frac{\left|\Delta_{j}\right|}{2}\left(\ell_{f} \sum_{j-1}^{m+1}+\frac{c_{i}}{r_{j-1}}\right)\right] \ell_{\varnothing_{j, 1}, f}
$$

$$
\left.-\left|b_{i}\right|+\frac{\Delta j_{j}}{2}\left(g_{f} l_{\Sigma_{j-1} m+1}-\frac{c_{i}}{\bar{r}_{j-1}}\right)\right] \ell_{\phi_{j, m}-1,1}
$$

$$
\left.+\left[\left.\right|_{j} \left\lvert\,-\frac{\Delta_{j} \mid}{2}\left(\frac{l_{j} m+1}{g_{f} \sum_{j-1}}-\frac{c_{i}}{\bar{r}_{j-1}}\right)\right.\right]{ }_{\phi_{j-1, I}}^{\ell_{j-1}}+\left.\frac{e_{i} g_{f}}{2}\right|_{j} \right\rvert\,\left[l_{S_{j, m}}+l_{S}{ }_{j-1, m+1}\right]
$$

$$
\begin{equation*}
+\left[\frac{\left|b_{i}\right|-\mid d_{i j}}{2}\right]\left[\ell_{\varnothing_{j, m}^{i-1, f}}+\ell_{\emptyset_{j, m+1}^{i-1,1}}-\ell_{\emptyset_{j-1, m}^{i-1, f}}-\varnothing_{j-1, m+1}^{i-1, f}\right] \tag{alb}
\end{equation*}
$$

A similar procedure is used in deriving the equations for the

$$
\begin{aligned}
& \left|\frac{h_{f}}{\mid \Delta_{m}}\right|\left(\ell_{\phi_{j-1, m}}+\frac{\ell_{j-1, f}}{\ell_{j-1, m}}-\ell_{\phi_{j, 1, m-1}}-\ell_{\phi_{j-1, m-1}}\right) \\
& +\left|\frac{b_{i}}{\Delta{ }_{j}}\right|\left(\ell_{\varnothing_{j, m}^{j, f}}+\ell_{\phi_{j, m}^{i-1, f}}-\ell_{\emptyset_{j-1, m}}-\ell_{\phi_{j-1, m}}^{i-I, f}\right)= \\
& -\left[\ell_{f} \sum_{j-1}+\frac{c_{i}}{\bar{x}_{j-1}}\right]\left[\frac{\ell_{\phi_{j, f}}+\ell_{\phi_{2}, f}+{ }_{j-1, m-1}}{2}\right] \\
& -\left[\sum_{f} \sum_{j-1}^{m-1}-\frac{c_{i}}{r_{j-1}}\left[\frac{l_{\ell_{j, m}}+l_{\ell_{j-1, m-1}}}{2}\right]\right.
\end{aligned}
$$

$$
\begin{align*}
& +\frac{{ }_{i} g_{f}}{2}\left[{ }^{\ell} s_{j, m}+\ell_{s_{j-1, m-1}}\right] \tag{22a}
\end{align*}
$$

To both sides of equation (22a) we add

$$
\left\lvert\, \frac{b_{i} \mid}{\left|\Delta_{j}\right|}\left(\ell_{\varnothing_{j-1, m-1}^{i, f}}+\ell_{\phi_{j-1, m-1}^{i-1, f}}-\ell_{\varnothing_{j, m}^{j, f}}-\ell_{\varnothing_{j, m}}\right.\right.
$$

and define

$$
\omega^{\text {if }}=\frac{\left|\Delta_{j}\right|\left|n_{f}\right|}{\left|\Delta_{m}\right|\left|b_{i}\right|}
$$

we obtain

$$
\begin{align*}
& \left|b_{i}\right|\left(1-\omega^{i f}\right)\left[-\ell_{\phi_{j-1, m}^{i, f}}-\ell_{\phi_{j-1, m}^{i-1, f}}+\ell_{\phi_{j-1, m-1}^{i, f}}+\ell_{\phi_{j-1, m-1}}\right]= \\
& \quad\left[\left|b_{j}\right|+\frac{\Delta}{2}\left(\ell_{f}^{\sum_{j-1} \sum_{j-1}}+\frac{c_{i}}{\bar{r}_{j-1}}\right)\right] \ell_{\phi_{j, m}, f}+A_{3} . \tag{22b}
\end{align*}
$$

From this expression
where A_{3} is defined by equation (18c)
For case B-4
where A_{4} is defined by equation (19b)
For case B-1
where A_{2} is defined by equation (20b)

For case B-2

$$
\ell_{\phi_{j, m}{ }_{j, f}}=\frac{\left|b_{i}\right|\left(1-\omega^{i, f}\right)\left[\ell_{\phi_{j-1, m}, f}+\ell_{\phi_{j-1, m}^{i-1, f}}-\ell_{\phi_{j-1, m+1}, f}-\ell_{\phi_{j-1, m-1}^{i-1, f}}\right]+A_{2}}{\left|b_{i}\right|+\frac{\Delta_{j}}{2} \left\lvert\,\left(g_{f} \ell_{j-1} m+\frac{c_{i}}{\bar{r}_{j-1}}\right)\right.}
$$

where A_{2} is defined by equation (21b).
The vector fluxes defined by equations (18d), (19a), (20a), (21a), (22c), (23), (24), (25), are valid for all values of μ with the exceptions of the end points of our μ space where $\mu= \pm 1$. At these points trouble is experienced with singularijies! $[11$ However, a modified equation may be derived by letting the terms containing $\frac{7}{F}$ in all equations following equation (I) be replaced by zero, since for $\mu= \pm 1$ the: term in $\frac{1}{\bar{r}}$ in equation (1) vanishes. This special equation was not needed since values of μ were chosen which avoided these singular points.

The procedures described above result in n equations. One more equation is needed and is provided by setting $n=-1$ in equation (3). The development above may be used when the values of $b, c, \varnothing_{\dot{j}}, \varnothing_{-1,}$, and e used above are replaced by $-1,0, \phi(\eta=-1), 0$, and 1 , respectively. These values reduce equation (6) to that found for the special case. Thus equation (6c) becomes with $i=0$

$$
\ell_{\phi_{j, m}, f}=\frac{\left(1-\omega^{0, f}\right) \ell_{\ell_{j, m-1}}+\omega^{0, f} \frac{A^{\prime}}{3}}{1+\frac{\omega^{0, f} \Delta_{j} \mid}{2}\left(g_{f}^{\Sigma_{j-1}^{m-1}}\right)}
$$

where

$$
\left.A_{3}^{\prime}=\left[+1-\frac{\Delta_{j}}{2}\left(g_{f} \Sigma_{j-1}^{m-1}\right)\right] \ell_{\ell_{j-1, m-1}}^{0_{g} f}+\frac{g_{f}}{2} \right\rvert\, \Delta{ }_{j}\left[\ell_{j, m} \ell_{S_{m-1, m-1}}\right]
$$

$\left.b_{i}\right]$ Values obtained by differencing and integration of the transport equation over η, and defined by Equations 7a to 7d of Appendix A.
$\left.g_{f}\right\}$ Values depending upon the quantized values of μ, and defined
$h_{f} \int$ by Equations $7 e$ and $7 f$ of Appendix $A_{\text {. }}$
$\hat{i} \quad$ a unit vector in the direction indicated by a subscript.
$l_{p} \quad$ Fraction of fission neutrons which are produced in a particular energy group l.
\mathbf{r} The radial distance to 2 point.
$\bar{r}_{h} \quad$ The mean radius between two adjacent grid points.

2 The axial distance.

E Neutron energy from a point. See Figure 1, Appendix A.
$\mathrm{H}_{\mathrm{f}} \quad$ Values obtained by the use of the Gauss quadrature approximation to sum the flux over μ space, defined by Equation 13, Appendix $A_{\text {. }}$
$P_{i} \quad$ Values obtained by the use of the S_{2} approxination to sum the flux over μ space, defined by Equation 12, Appendix A.
$\propto \quad$ Ratio of the minimum neutron energy after scattering to its energy before scattering.

Grid spacing of a mesh.
$\eta \quad$ Cosine of the angle ψ
θ Angle between the axis and the direction in which neutrons travel. See Figure I, Appendix A.
$\mu \quad$ Cosine of the angle θ_{0}
$\mu_{k} \quad$ The probability that 2 neutron which is scattered in the k group will land in the $e^{\text {th }}$ group.
v Number of neutrons produced per fission.
$\Sigma \quad$ Total macroscopic cross section.
$\Sigma_{f} \quad$ Fission macroscopic cross section.
l $\mathrm{k} \quad$ The probability per unit length of neutron travel that 2 neutron is scattered in group k.
$\varnothing(r, z$, Neutron flux which is classified according to speed, ∇, $\mu, \eta, \nabla)$ colatitude and azimuthal direction cosines μ and η, and position r and z 。
$\Psi \quad$ Colatitude angle denoting neutron travel with respect to the radius. See Figure I, Appendix A.
ω See defining equation Page A-12, Appendix A.

二J' See defining equation' Page A-17; Appendix A.
$\widehat{\Omega}$ Direction of unit vector in which neutrons travel:

Superscripts and Subscripts

i
f Index labeling quantized values of μ_{0}
k neutron speed index of group in which neutron is scattered.

Appendix B

Whirlwind Program

Prior to the use of this program the following preset parameters must be defined and/or calculated:
$\mathrm{pzl}=$ number of grid points in a radial direction less one $\mathrm{pz2}=$ number of grid points in an axial direction less one pz 3 = number of iterations, N, allowed at a set radius, in attempting to achieve a convergence of source pattern:...
$\mathrm{pz} 4=$ number of adjustments, N^{\prime}; of radius_allowed in attempting to achieve criticality.
$\mathrm{pf} 2 \geq$ drum address of cross section
$\mathrm{pfl}+92(\mathrm{pzl}+2)(\mathrm{pzl}+2)$
$\mathrm{pf} 3=92(\mathrm{pz} 2+2)$
$\mathrm{pf} 4=6(\mathrm{pz} 2+1)$
The preset parameters listed below were used in the development of the program and have the values as indicated
pfl $=5000$; drum address of first flux at origin point. pf5 $=7043$ address in fast memory at which the print-out routine will be placed when needed $\mathrm{pf} 10=2650$, address of the print-out routine in the drum $\mathrm{pfll}=3003$ length of the print-out routine $\mathrm{pf} 13=1 \mathrm{~L}_{\mathrm{f}} \mathrm{O}_{3}$ address in the fast memory of the vector flux subroutine of the quadrant being calculated.

It is necessary also to furnish the program at

1) a9, the value of $+(2 \mathrm{pzl}) .0$. This value is used in the calculation of $\frac{\Delta_{j}}{2}$
2) r 4 , the value of the first trial radius of core
3) r3, the value of the second trial radius of core For a three group solution, values of each of the thirty-six fluxes and the three sources at each point are assumed and placed on tape in the order indicated in Table I.

Table I

Sequence of fluxes at a point

f	i	ℓ
0	0	0
		1
		2
	1	0
		1
		2
	2	0
		1
		2
1	0	0
-		
	-	
$0 \leqslant \mathrm{f}<3$	$0<i<2$	$0 \leqslant \ell<2$

The points are ordered as indicated in Table II.

Table II

Sequence of points

As explained in the Procedure the probability of scattering from group to group and fission cross section are associated with the grid points. These are also placed on the tape of data immediately following the flux for $f=3$, $i=2$, and $l=2$ in the order indicated on the following page in Table III.

Table III

Sequence of additional data for a point

$$
\begin{aligned}
& \tau^{11} \\
& \tau^{21} \\
& \tau^{31} \\
& \tau^{22} \\
& \tau^{32} \\
& \tau^{33} \\
& \Sigma!
\end{aligned}
$$

The total scattering cross section is associated with the region between points and are ordered as in Table JV.

Table IV

Sequence of Total cross sections
j
0
0
1
pz2

pz2

IC TAPE 410-316-1032 s^{2} AND GAUSS CAMPBELL AND PANCIERA
$(24,6)$
pzil=5 pz2=5 pz3=20 pz4=20 pf1 $=5000 \quad \mathrm{pf} 2=10000 \mathrm{pf3}=644$ pfle $=36 \quad$ pff $=704 \quad$ pfl0 $=2650$ pfl3 $=1470$ pf1 $5=300$
/Constants
$21,+1.0$
$23,+2.46$
a) $-1.0 \quad 25,1.9677$
$22,+0.0+1.333333+2.0$
3, 2.16
+1. 1306938
$+1.306938$
$+1.9677054 \quad 26,+0.03$
$+0.03+10.0$
$+0.3634 \quad+0.3183 \quad 28,+0.6521452 \quad+0.3478548$
$+0.6521452 \quad 29,+22.0 \quad 210,+4.0 \quad 211,+1.6944625 \quad+0.3843341$
/Cross Sections

m 8 , $\mathrm{pf} 3 \mathrm{~m} 9, \mathrm{pf} 4 \quad \mathrm{mlO},+92 \mathrm{mll},+6 \mathrm{ml2}, \mathrm{pfl} \mathrm{ml} 3, \mathrm{pf} 2 \mathrm{mll},+0$
$\mathrm{ml} 5,+0$
/RADII
$r 3,+0.0 \quad r 4,+0.0 \quad r 5,+0.0$
/NORMALIZING CONSTANTS
$\mathrm{dl}_{3}+0.0 \quad \mathrm{~d} 2,+0.0 \quad \mathrm{~d} 3,+0.0 \quad \mathrm{rl},+0.0 \quad \mathrm{r} 2,+0.0 \quad \mathrm{~s} 10,+0.0$
/TARIABLES
$\mathrm{Cl}_{2}+4.8 \quad \mathrm{c}_{2}=5.6 \quad \mathrm{c} 3 .+0.6885 \quad+0.2295+0.4590+3.0355$
$+1.0118+2.0236$
/ $\mathrm{j}=1$, $\mathrm{m}-1$ numbers

$\mathrm{nI},+1.0$	DITTO	$72 \mathrm{r} / \mathrm{sI},+1.0$	+1.0	+1.0	+1.0
+1.0	+1.0	+1.0	+1.0	+1.0	+1.0

/fln.m numbers
$\mathrm{n} 2,+1.0$ DITT
$+1.0 \quad+1.0$
$/ j-1_{9} m+1_{9}$ numbers
$\begin{array}{ll}\mathrm{n} 3,+1.0 \quad & \text { IIT } \\ +1.0 \quad+1.0 \\ / \mathrm{j}_{2} \mathrm{~m}-1, & \text { numbers }\end{array}$
$\mathrm{nl}_{2}+1.0$ DITT
$+1.0+1$.
$/ j_{9} \mathrm{~m}$ numbers

$n 5,+1.0$	DITTO	$72 \mathrm{r} / \mathrm{s} 5,+1.0$	+1.0	+1.0	$t 5,+1.0$	
+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	
$/ \mathrm{I}_{9} \mathrm{~m}+1_{9}$	mambers					
$\mathrm{n} 6_{5}+1.0$	DITTO	$72 \mathrm{r} / \mathrm{s} 6,+1.0$	+1.0	+1.0	$+6,+1.0$	
+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	

$/ \mathrm{j}+\mathrm{I}_{-9} \mathrm{~m}-1$, numbers

$\mathrm{n} 79+1.0$	DITTO	$72 \mathrm{r} / \mathrm{s}$		+1.0	$+1.0$	t7, +1.0
+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	
$1 \mathrm{j}+\mathrm{I}_{\bullet} \mathrm{m}$, mumbers						
$n 8,{ }_{2} 0$	DITTO	$72 r / s$		+1.0	+1.0	t8, +1.0
+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	

$1 \mathfrak{j}+I_{9} m+1$ numbers

$\mathrm{n} 9,+1.0$	DITTO	$72 \mathrm{r} / \mathrm{s} 9,+1.0$	+1.0	+1.0	t9, +1.0	
+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	

/CONVERGED GAMMA

ml, itaml8	itsr5	id
icr6	isc2	i
isc0	imral+c	i
ictm2	isco	i
lscl	icrozl+1	i
icarl	itsr2	iad
isco	ictm5	i
/jgm SENSE AND CONTROL		

ilgitai7 mhmilo	iscl slh15	itim6	isc2 tsml 5	itim7 cam8	$\begin{aligned} & \text { OUT } \\ & \text { mhm6 } \end{aligned}$	cam7 slh15
tsmil	adm 15	tsi6	caml5	suml0	tsml5	adml4
tsm29	caml4	sum8	adnk 5	tsm26	camI4	2 dm 8
admis	tsm30	cam7	sul	mhmil	slhl5	adml3
tsmi5	cam9	mhm6	slh15	tsml 4	2 dm 25	$t s m 32$
caml4	sum9	adml5	tsm31	cam6	dm0	cpi2
cam?	dmo	cpi3	IN	ispm23	ispm27	ispi5
i2, cam7	dm0	cpi4	IN	ispm23	ispm21	ispi5
i3. IN	ispm23	ispm24	ispi5	$14,7 N$	ispm23	ispm16
15.5 iDOB	n5	$i 6,+0$	+78	i7,ispo		
fata read In ProgramMe						
m23, itam33	iDIB	nI	m26, 0	+276	iDIB	$n 4$
m 29 + 0	*276	iDIB	n7	m30, +0	+276	iDIB
b1	m31 ${ }_{9}+0$	+6	iDIB	b2	m32, +0	+6
m33, ispo						
/ORIGIN PROGRAM						
mi6っitaml7	ispplo	isppl3	icaal	$i d v t ?$	itsdi	ispe 3
iDIB	pfl3	+2050	+175	ispfl	ml7,isp0	

/CENTERLINE PROGRAM						
m 21.1 tam22	ispp4	isppl3	ispe 3	iDIB	pfl3	+2050
+175	ispfl	iDIB	pft 3	$+2475$	+175	1spfl 8
m22, 1sp0						
MIDPLANE PROGRAM						
m24, itam25	ispp7	isppl3	ispe 3	IDIB	pfl3	+2050
+175	ispfl	iDIB	pfl3	+2225	+125	ispfl0
m25, ispo						
/GENERAL POINT PROGRAM						
m27, itam28	isppl	isppl3	ispe 3	iDIB	pfl3	+2050
+175	ispfl	iDIB	pfl3	+2225	+125	ispfl0
iDIB	pfl3	+2350	+125	ispf27	iDIB	pfl3
+2475	+175	ispfl8	m28,isp0			
/Source $\mathrm{S}_{5} \mathrm{~S}^{1}{ }_{2} \mathrm{~S}^{2}$ 2t all Points						
pl3, itapl4	icat6	imrt5	itstl	icaa3	imrt5+12	imrt6+4
iadtl	itst7	icat6	immt5 +2	itstl	icat6+2	imrt5+6
iadtl	itst7+2	reat6	imrt5 ${ }^{\text {a }}$	itstl	icat6+2	imrt5 +8
iadtl	itstl	icat6+4	imrt5+10	iadtl	itst $7+4$	pl4,isp0
/Source Normalization+Tolerance			Program			
-3, itae7	icat7+2	imrdl	itss5+2	icat $7+4$	imrdl	itss $5+4$
icat?	imrodl	itst7	isus5	icpel	idvt?	isua6
icpe 5	e6,iesa6	itssl0	ispe 5	e4,idvt?	iada6	icpe6
e5sicat7	itss 5	-7,isp0				
/SCALAR Flux-General Point						
ploitap3	isc 3	icr 3	p2,icap?	imrn5 ${ }^{\text {co }}$	itstl	icaa7+2
Immis +6 tc	iactl	itstl	icaa $7+4$	immenti2		iadtl
imma	itstl	icaa 7	imm5+18		itst2	icaa7+2
Imrn5+24+c	iadt2	itst2	icaa $7+4$	imrn5+30		iadt2
1m²8+2	iadtl	itstl	icaa?	imrn5 ${ }^{\text {a }} 36$		itst2
icaa $7+2$	imma $5+42+$		iadt2	itst2	icaa $7+4$	imrn $5+48+c$
iadt2	imra8+4	iadtl	itstl	icaa7	imen5+54	
Itst2	icaa $7+2$	immon +60		iact2	itst2	icaz $7+4$
imme $5+66+c$	iadt2	imma6+6	iadtl	itst6+c	ictp2	p3, ibpo
/Scalar Flux-Centerline Point						
p4, itap6	isc3	icr 3	p5, icaa8	immen $5+$	itstl	1c2a8+2
imms $+18+c$	iadtl	itstl	icaa8+4	imme $5+36$		iadtl
itstl	icaa8+6	imrn5 5		iadtl	imra 7	itstl
icaa8	imm $5+6+c$	itst2	icaa $8+2$	imrn5 ${ }^{\text {2 }} 4$		iadt2

itst2	icaa8+4	imarn $5+42+c$		iadt2	itst2	icas8+6
$\begin{aligned} & \text { imen5 }+60+c \\ & \text { p6,isp0 } \end{aligned}$	iadt2	imma7+2	iadtl	imra2+4	itst6+c	ictp5
/Scaiar Flux-Midplane		Point				
p7,itap9	isc3.	1cr3	p8,icaa 7	imms $5+c$	itstl	icaz7+2
	i2dtl	itstl	icaa $7+4$			iadtl
imme 8	itstl	icaa 7	imme $5+18 \rightarrow c$		itst2	icaa 7+2
imm $5+24+c$	iadt2	itst2	icaa $7+4$	imm $5+30+c$		iadt2
imra8+2	iadtl	imra2+4	itst6+c	ictp8	p9,isp0	
Scalar Flux - Origin						
pl0, 1 tapl2	isc3	icr 3	pll,icaz7	imrn5+c	itstl	icaz7+2
imrn5+6+c	iadtl	imra8	itstl	icaa?	imm $5+18$	
itst2	icaa7+2	imm5 $5+24+c$		iadt2	imra8+2	iadtl
imma2+4	immat 4	itst6+c	ictpll	pl2,isp0		
/RADIUS EXTRAPOLATIO		ROUTINE				
qi.gitaq9	icad2	isual	itstl	icpq2	q3,itst3	icad3
isual	itst2	icpq4	q5,itst 4	isut3	icpq6	icad2
iexd3	itsd2	icar3	iexre 4	itsr3	icat3	iext4
itst3	icatl	iext2	itstl	q6,icat3	isua6+2	icpq7
q8,icad2	isud3	itst6	icarl	isur3	imrtl	idvt6
iadx 3	itsr 3	q9,isp0	q2,imral	ispq3	q4,imral	ispq5
/Control						
x, وicax 4	isc4	icrpz 4	ispmI	icadl	itsd3	x2,icar3
ispml	icadl	itsd2	iscl 4	ictx 3	iSTOP	x3,ispqI
ispx2	q7,iDIB	pf5	pfl0	pfl5	q10,isppf	
istop						
WORKING FLUX						
1470/51, +0	DITTO	175r/y2, +0				
First Quadrant Flux Fixiat Flux						
DA2050/ 1470/ f1gitaf3			isc3	icr 3	f2,icsb2+6+c	
inme 5	imrel	itstl	iadal	imrn9+c	itst2	icas5tc
iads9tc	imra 5	imrcl	iadt2	imre3	itst2	icstl
inces	iadal	itstl	icaal	isuc3	imm6te	iadt2
idyti	itsn5+c					
/Second Flux						
149ics22+2	idvrol	itstl	icsb2+6+c	imra 5	1tst2	iadtl

incel	itst3	iadal +2	imm9 $9+6+c$	itst4	ict.tl	iadt2
imeel	itst6	iadal +2	imrn9+c	iadt4	itst4	icat6
isual+2	f5, imrn5+c		iadt4	itst4	icas5 ${ }^{\text {c }}$ c	iads9+c
irme 25	immel	impa2+4	iadt4	itst4	icsal+4	iadal +2
idva2+4	itstl	ican6tc	iadn5+c	isun9+c	isun8+c	imrtl
iadt4	imre3+2	itst4	f6,icst3	imrc3+2	iadal+2	itst2
icaal	isuc3+2	impal+2	itst3	ican $6+6+c$	iadn6+c	isun5 ${ }^{\text {ch }}$ c
imrt3	i2dt4	idvt2	itsn $5+6+c$			
/Third Flux						
f7,icsb2+6+c		imma $5+2$	imrcl	itstl	ildal	imrn9+18+c
itst2	icas $5+c$	iads9+c	imra 5+2	imrcl	iadt2	imre3+6
itst2	icstl	iadal	imre3+6	itstl	icac3+6	isual
itst3	ican $8+18+c$		isun9+18+c		imre 3	iadt2
idvtl	itsn $5+18+c$					
Fourth Flux						
f_{8} gicsa2+2	idvrl	itstl	icsb2+6+c	imma $5+2$	itst2	iadtl
imrel	itst3	iadal+2	immen $+24+c$		itst4	icstl
iadt2	imrcl	1tst6	iadal +2	imrn9 $+18+c$		iadt4
itst4	icat6	isual +2	imrn5 $+18+c$		iadtl	itst4
19, 2 cas $5+\mathrm{c}$	iads9+c	imra $5+2$	imrcl	imra2+4	iadt4	itst4
iesal+4	ladal +2	idva2+4	itstl	ican6 $+18+c$		iadn5+18+c
isun $9+18+c$	isun $8+18+c$		imrtl	iadt 4	imre3+8	itst4
Lest3	imre3+8	iadal +2	itst2	icaal	isuc $3+8$	imral +2
itst3	ican $6+24+c$		iadn6+18+c		isun5+18+c	
imet3	iadt4	idvt2	itsn5 $+24+c$		ictf2	93,isp0
/Second quadrant flux						
FFirst flux						
DA2225/ 1470/ flositafl?			isc3	icr 3	fllgicsa $2+2$	
idvi2	itstl	icsbl+6+c	imma 5	itst2	iadtl	imrcl
itst3	iadal+4	imrn3+12+c		itst4	icstl	iadt2
immel	itst6	iadal 4	imma $3+6+c$	iadt4	itst4	icat6
isual-4	imrn5 $+6+\mathrm{c}$	f12,iadt4	itst4	icas5+c	iads3+c	imma
imecl	impa2+4	iadt4	itst4	ica21+4	isual +2	idva2+4
itstI	ican $6+6+c$	i2dn5+6+c	isun $3+6+c$	isun $3+6+c$	itst3	ican6+12+c
iadn6+6+c	ismm $5+6+c$	imrt3	iadt4	idvt2	itsn5+12	
/Second Flux						
fil4,icsa2+2	idvi2	itstl	icsbl $+6+\mathrm{c}$	imra $5+2$	itst2	iadtl
imel	itst3	iadal +4	imm $3+30+c$		itst4	icstl
ixdt?	imrel	itst6	iadal 4	imrn3+24+c		iadt4
itst4	icat6	isual ${ }^{\text {l }}$	imm5 $+24+c$		115,iadt	itst4

1¢å $5+c$	iads3tc	imma $5+2$	imrel	imra2+4	iadt4	itst4
1casit4	isual +2	idva2+4	itstl	ican6		iadn5 $+24+c$
2sun3 $+24+c$	isun2 $+24+c$		imrtl	iadt 4	imre $3+10$	itstl
Icst3	iadal +4	imre $3+10$	itst2	fl6, ic		isual
imoal +4	itst3	ican $2+30+c$		iadn2+2		isun3+30+c
isun $3+24+c$	imrot3	iadtl	idvt2	itsn5+3		ictfll

filsisp0
Third Quadrant Flux
first Flux
DA2350/ 1470/f27, itaf33 isc3 icr3 f28,icsa2+2
idvr2 itstl icsbl+c imra5+4 itst2 iadtl imrcl
itst3 iadal+4 imml+48+c
icatl
isual+4
imm $5+42+c$
itst4 icstl iadt2
imrel itstl iadal +4 imrnl $+42+c$ iadt 4 itst4
iadt4 itst4 f29っicas5+c
iadsltc imra5 +4 imrcl impa2+4 iadtL itst4 icaal+4
isual +2 idva2 +4 itstl ican5 $+42+c$
$1 \operatorname{sun} 2+42+c$
1.ester iadal+4 imec3+10
itst3 ican2+48+c
isunal42+c imret3 iadtl idvt2 $\mathbf{P 3 O}_{2}$ itsn5 $+48+c$
/Second Flux

131 Iicsa2t2	idvro	itstl	icsbltc	impa $5+6$	itst2	iadtl
impel	itst3	1adal+4	imrnl+66		itstl4	icstl
iadt2	imrel	itstl	iadal +4	imrnl $+60+\mathrm{c}$		iadt4
itst4	icatl	isual+4	imrn5 $+60+c$		iadt4	itst4
f32, icas5tc	iadsltc	imra5+6	imrcl	imra2+4	iadt 4	itst4
icaar 4	isual+2	idva2+4	itst2	ican5 $+60+c$		iadn $4+60+c$
isun2+60tc	isuni $+60+c$		immt2	iadt4	imre $3+4$	itstl
icst3	imre3+4	iadal +4	itst2	icaal	isuc $3+4$	impal 4
Itst3	ican4+66+c		iadn4 $+60+c$		isun $5+60+c$	
inmet	iadtl	idvt2	itsn5+6		ictf28	f33, isp0

Fourth Quadrant Flux
/First Flusx

Second Flux						
$120,1 \mathrm{csa} 2+2$	idvrl	itstl	icsb2+c	imra5+4	itst2	iadtl
1 mrel	itst3	iadal+2	imm7 $+42+c$		itst4	icstl
iadt2	imrel	itst6	iadal +2	imrn7+36+c		i2dt4
itst4	icat6	isual+2	imen $5+36+c$		iadt4	itst4
P21, icas $5+c$	iads7+c	impo5+4	imrcl	imra2+4	iadt4	itst4
icasl+4	idva2 $2+4$	itstl	ican5+36+c		iadn $4+36+c$	
i.sun8+36+c	isun7+36+c		imptl	iadt4	imre3+8	itstI
iest3	impe $3+8$	iadal+2	itst2	P22,ic2al	isun $3+8$	impal+2
itst3	icanl $+42+c$		iadn $4+36+c$		isun5+36+c	
imrt3	iadtl	idvt2	$i t s n 5+42+c$			
Third Flux						
f23, icsb2+c	imm25+6	imrcl	itstl	iadal	immer $+54+c$	
itst2	icas $5+c$	iads7+c	imma ${ }^{\text {+ }} 6$	imrel	iadt2	imre 3
itst2	iestl	imee 3	iadal	itstl	icand	isuc3
imrnl $+54+\mathrm{C}$	iadt2	idvtl	itsn $5+54+c$			
Fourth Flux						
124,icsa2+2	idrrl	itstl	icsb2+c	imma $5+6$	itst2	iadtl
ixecl	itst3	iadal+2	imm7+60+c		itst4	icstl
: iarct	imecl	itstl	iadal +2	imrn7+54+c		iadt4
itst4	icatl	isual+2	iman $5+54+c$		iadt4	itst4
$12501025{ }^{\text {+c }}$	iads7tc	immo5+6	immel	imra2+4	fadt 4	icaal+2
isual 4	idva2+4	itstl	ican $5+54+c$		jadn $4+54+c$	
1 vun $8+54+c$	isun7+54+c		imptl	1adtL	imre $3+2$	itstl
icst3	imre3+2	iadal+2	itst2	icazl	isuc $3+2$	impal+2
Itst ${ }^{\text {a }}$	ican $4+60+c$		12dnl $+54+c$		isun $5+54+c$	
immet	iadtl	idivt2	itsn5+60+c		ictfl9	f26,isp0
DA2650/.704/ moitaz14			iscl	$1 \mathrm{crpzl}+2$	isc2	icrpz2+2
1cadl	ispl36z13	iscl	212,itim6	isc2	zll, itim $^{\text {7 }}$	OUT
cmm	mhmilo	sIh15	$2 \mathrm{dml2}$	tsml5	cam8	mhm6
sin 25	admis	tsz2	cam6	dm0	cpz3	cam7
dm0	cpz 4	IN	ispz 5	isppl	ispz6	23, cam7
dm0	cpz7	IN	1spz 5	ispp4	ispz6	24, IN
Ispz 5	ispp7	ispz6	27, IN	ispz 5	isppl0	ispz6
isc2	ictzll	iscl	ictzl2	z14, isp0	25,itaz8	IDIB
$n 5$	22.40	+72	28,isp0	z6,ispz6+1		z14,ispo
\%10,icat6	ispl39z13	1cat6+2	ispl39z13	icat6+4	ispl36z13	z9,ispz7+4
213.						

Appendix C

Bibliography

1. Trilling, C. A., "Organic Moderated Reactor Experiments", Nucleonics, Vol. 14, No. 8.
2. Dowtherm, Booklet, Dow Chemical Company, Midland, Michigan.
3. Gurinsky, D. H. and Dienes, G. J., Nuclear Fuels, D. Van Nostrand Co_{s}, Inc., Princeton, N. J., 1956
4. Freund, G. A., "Organic Coolant-Moderator for Power Reactors", Nucleonics, Vol 14, No. 8
5. Harvey, J. A. and Hughes, D. Jo, Neutron Cross Section, BNL 325 (1955).
6. Corlson, B. G., "Solution of the Transport Equation by S_{n} Approximation", LA-1891 (1955)
7. Clark, M. Jr., "S Method", N-22 Notes on Nuclear Reactor Theory for Spring 1956, Mass. Institute of Technology, 11 May 1956.
8. Hobson, E. W., The Theory of Spherical and Ellipsoidal Harmonics, Chapters 1, 2, Cambridge University Press, London, 1931.
9. Glasstone, S. and Edlund, M. C., The Elements of Nuclear Reactor Theory, D. Van Nostrand Co, Princeton, N. J., 1952.
10. Clark, M. L. Jr., N-22 Notes on Nuclear Reactor Theory for Spring 1956, problem 74, Mass. Institute of Technology.
11. Carlson, B. G., The "SNG Code". Los Alamos Scientific Laboratory of the University of California, Feb. 6, 1956.
12. Comprehensive Systems Manual, Mass. Institute of Technology Computer Laboratory, 1957.

[^0]: - Nomenclature for Heat Transfer on pages 22 and 23.

[^1]: excessive temperature
 γ
 uranium content too low

